File size: 2,529 Bytes
32ec1c3 477d55b 32ec1c3 477d55b 32ec1c3 477d55b 32ec1c3 477d55b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
title: Acne Detection AI π₯
emoji: π₯
colorFrom: indigo
colorTo: yellow
sdk: gradio
sdk_version: 5.25.2
app_file: app.py
pinned: true
license: apache-2.0
short_description: Advanced AI for Acne Segmentation & Severity Classification
---
# π§ Acne Detection & Classification with Deep Learning
 <!-- You can upload a real image here -->
This application demonstrates a powerful **AI-driven pipeline** for **acne detection, segmentation**, and **severity classification**, combining:
- A **UNet-based CNN** for precise acne lesion segmentation (pixel-wise accuracy β **96β98%**)
- A **transformer-based classifier** (fine-tuned Vision Transformer) for grading severity based on dermatological standards
Try it by uploading a face image.
It will return:
β
a **visual overlay** showing detected acne regions
β
a **severity label** (from clear skin to very severe acne)
---
## π§ͺ Model Architecture
### πΉ Segmentation Model
- Architecture: `UNet` with `ResNet34` backbone (from [smp](https://github.com/qubvel/segmentation_models.pytorch))
- Optimized for: Binary mask prediction of acne regions
- Trained on: Annotated dermatological datasets
- Accuracy: **Pixel Accuracy β 98%**, **IoU β 91%**
### πΉ Classification Model
- Architecture: Vision Transformer (ViT)
- Source: [`imfarzanansari/skintelligent-acne`](https://huggingface.co/imfarzanansari/skintelligent-acne)
- Labels: From `Level -1 (Clear)` to `Level 4 (Very Severe Acne)`
- Input: Facial image
- Output: Severity level + confidence score
---
## π Example Output
| Input Image | Segmentation Overlay | Acne Level |
|-------------|----------------------|------------|
|  |  | Level 2: Moderate Acne |
---
## π‘ Use Cases
- Dermatology research and screening
- Skincare and cosmetic product testing
- Automated health monitoring platforms
---
## π§© Tech Stack
- `PyTorch`, `Segmentation Models PyTorch`
- `Transformers` by Hugging Face
- `Albumentations` for fast preprocessing
- `OpenCV`, `Gradio` for live interface
## π€ Try it now!
Click below and upload a photo to get real-time predictions:
Check out the configuration reference at [https://huggingface.co/docs/hub/spaces-config-reference](https://huggingface.co/docs/hub/spaces-config-reference)
|