Add application file
Browse files- wrinkles.py +78 -0
wrinkles.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import segmentation_models_pytorch as smp
|
8 |
+
|
9 |
+
def pad_to_divisible(img, div=32):
|
10 |
+
h, w, _ = img.shape
|
11 |
+
new_h = math.ceil(h / div) * div
|
12 |
+
new_w = math.ceil(w / div) * div
|
13 |
+
pad_bottom = new_h - h
|
14 |
+
pad_right = new_w - w
|
15 |
+
padded = cv2.copyMakeBorder(img, 0, pad_bottom, 0, pad_right, cv2.BORDER_CONSTANT, value=[0, 0, 0])
|
16 |
+
return padded
|
17 |
+
|
18 |
+
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
print("Using device:", device)
|
21 |
+
|
22 |
+
model_path = "best_unet_model_complete.pth"
|
23 |
+
if os.path.exists(model_path):
|
24 |
+
loaded_model = torch.load(model_path, map_location=device)
|
25 |
+
loaded_model.eval()
|
26 |
+
print("Loaded complete model from", model_path)
|
27 |
+
else:
|
28 |
+
raise FileNotFoundError(f"Model file not found at {model_path}")
|
29 |
+
|
30 |
+
def predict(image):
|
31 |
+
"""
|
32 |
+
Takes an input image (as a NumPy array), pads it, performs inference,
|
33 |
+
and returns:
|
34 |
+
- the padded input image,
|
35 |
+
- the predicted mask (grayscale), and
|
36 |
+
- the original image with a red overlay on the predicted regions.
|
37 |
+
"""
|
38 |
+
|
39 |
+
if image.shape[2] == 4:
|
40 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
|
41 |
+
|
42 |
+
|
43 |
+
external_image_rgb = image.copy()
|
44 |
+
|
45 |
+
external_image_padded = pad_to_divisible(external_image_rgb, div=32)
|
46 |
+
|
47 |
+
external_image_norm = external_image_padded.astype(np.float32) / 255.0
|
48 |
+
external_tensor = torch.from_numpy(external_image_norm).permute(2, 0, 1)
|
49 |
+
external_tensor = external_tensor.unsqueeze(0).to(device)
|
50 |
+
|
51 |
+
with torch.no_grad():
|
52 |
+
output = loaded_model(external_tensor)
|
53 |
+
pred_mask = (torch.sigmoid(output) > 0.3).float()
|
54 |
+
pred_mask_np = pred_mask.cpu().squeeze().numpy()
|
55 |
+
|
56 |
+
|
57 |
+
overlay_image = external_image_padded.astype(np.float32)
|
58 |
+
mask_bool = pred_mask_np > 0.5
|
59 |
+
red_color = np.array([255, 0, 0], dtype=np.float32)
|
60 |
+
alpha = 0.5
|
61 |
+
overlay_image[mask_bool] = (1 - alpha) * overlay_image[mask_bool] + alpha * red_color
|
62 |
+
overlay_image = np.clip(overlay_image, 0, 255).astype(np.uint8)
|
63 |
+
|
64 |
+
return external_image_padded, pred_mask_np, overlay_image
|
65 |
+
|
66 |
+
demo = gr.Interface(
|
67 |
+
fn=predict,
|
68 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
69 |
+
outputs=[
|
70 |
+
gr.Image(label="Padded Image"),
|
71 |
+
gr.Image(label="Predicted Mask"),
|
72 |
+
gr.Image(label="Overlay (Predicted Regions)")
|
73 |
+
],
|
74 |
+
title="Wrinkle Segmentation",
|
75 |
+
description="Upload an image to see wrinkle segmentation. The app displays the padded image, the predicted mask, and an overlay of the predicted regions in red."
|
76 |
+
)
|
77 |
+
|
78 |
+
demo.launch()
|