Spaces:
Running
Running
| # -*- coding: utf-8 -*- | |
| # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
| # holder of all proprietary rights on this computer program. | |
| # You can only use this computer program if you have closed | |
| # a license agreement with MPG or you get the right to use the computer | |
| # program from someone who is authorized to grant you that right. | |
| # Any use of the computer program without a valid license is prohibited and | |
| # liable to prosecution. | |
| # | |
| # Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
| # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
| # for Intelligent Systems. All rights reserved. | |
| # | |
| # Contact: [email protected] | |
| import numpy as np | |
| import cv2 | |
| import pymeshlab | |
| import torch | |
| import torchvision | |
| import trimesh | |
| import json | |
| from pytorch3d.io import load_obj | |
| import os | |
| from termcolor import colored | |
| import os.path as osp | |
| from scipy.spatial import cKDTree | |
| import _pickle as cPickle | |
| import open3d as o3d | |
| from pytorch3d.structures import Meshes | |
| import torch.nn.functional as F | |
| from lib.common.render_utils import Pytorch3dRasterizer, face_vertices | |
| from pytorch3d.renderer.mesh import rasterize_meshes | |
| from PIL import Image, ImageFont, ImageDraw | |
| from kaolin.ops.mesh import check_sign | |
| from kaolin.metrics.trianglemesh import point_to_mesh_distance | |
| from pytorch3d.loss import (mesh_laplacian_smoothing, mesh_normal_consistency) | |
| # import tinyobjloader | |
| def rot6d_to_rotmat(x): | |
| """Convert 6D rotation representation to 3x3 rotation matrix. | |
| Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
| Input: | |
| (B,6) Batch of 6-D rotation representations | |
| Output: | |
| (B,3,3) Batch of corresponding rotation matrices | |
| """ | |
| x = x.view(-1, 3, 2) | |
| a1 = x[:, :, 0] | |
| a2 = x[:, :, 1] | |
| b1 = F.normalize(a1) | |
| b2 = F.normalize(a2 - torch.einsum("bi,bi->b", b1, a2).unsqueeze(-1) * b1) | |
| b3 = torch.cross(b1, b2) | |
| return torch.stack((b1, b2, b3), dim=-1) | |
| def obj_loader(path): | |
| # Create reader. | |
| reader = tinyobjloader.ObjReader() | |
| # Load .obj(and .mtl) using default configuration | |
| ret = reader.ParseFromFile(path) | |
| if ret == False: | |
| print("Failed to load : ", path) | |
| return None | |
| # note here for wavefront obj, #v might not equal to #vt, same as #vn. | |
| attrib = reader.GetAttrib() | |
| verts = np.array(attrib.vertices).reshape(-1, 3) | |
| shapes = reader.GetShapes() | |
| tri = shapes[0].mesh.numpy_indices().reshape(-1, 9) | |
| faces = tri[:, [0, 3, 6]] | |
| return verts, faces | |
| class HoppeMesh: | |
| def __init__(self, verts, faces): | |
| ''' | |
| The HoppeSDF calculates signed distance towards a predefined oriented point cloud | |
| http://hhoppe.com/recon.pdf | |
| For clean and high-resolution pcl data, this is the fastest and accurate approximation of sdf | |
| :param points: pts | |
| :param normals: normals | |
| ''' | |
| self.trimesh = trimesh.Trimesh(verts, faces, process=True) | |
| self.verts = np.array(self.trimesh.vertices) | |
| self.faces = np.array(self.trimesh.faces) | |
| self.vert_normals, self.faces_normals = compute_normal( | |
| self.verts, self.faces) | |
| def contains(self, points): | |
| labels = check_sign( | |
| torch.as_tensor(self.verts).unsqueeze(0), | |
| torch.as_tensor(self.faces), | |
| torch.as_tensor(points).unsqueeze(0)) | |
| return labels.squeeze(0).numpy() | |
| def triangles(self): | |
| return self.verts[self.faces] # [n, 3, 3] | |
| def tensor2variable(tensor, device): | |
| # [1,23,3,3] | |
| return torch.tensor(tensor, device=device, requires_grad=True) | |
| class GMoF(torch.nn.Module): | |
| def __init__(self, rho=1): | |
| super(GMoF, self).__init__() | |
| self.rho = rho | |
| def extra_repr(self): | |
| return 'rho = {}'.format(self.rho) | |
| def forward(self, residual): | |
| dist = torch.div(residual, residual + self.rho**2) | |
| return self.rho**2 * dist | |
| def mesh_edge_loss(meshes, target_length: float = 0.0): | |
| """ | |
| Computes mesh edge length regularization loss averaged across all meshes | |
| in a batch. Each mesh contributes equally to the final loss, regardless of | |
| the number of edges per mesh in the batch by weighting each mesh with the | |
| inverse number of edges. For example, if mesh 3 (out of N) has only E=4 | |
| edges, then the loss for each edge in mesh 3 should be multiplied by 1/E to | |
| contribute to the final loss. | |
| Args: | |
| meshes: Meshes object with a batch of meshes. | |
| target_length: Resting value for the edge length. | |
| Returns: | |
| loss: Average loss across the batch. Returns 0 if meshes contains | |
| no meshes or all empty meshes. | |
| """ | |
| if meshes.isempty(): | |
| return torch.tensor([0.0], | |
| dtype=torch.float32, | |
| device=meshes.device, | |
| requires_grad=True) | |
| N = len(meshes) | |
| edges_packed = meshes.edges_packed() # (sum(E_n), 3) | |
| verts_packed = meshes.verts_packed() # (sum(V_n), 3) | |
| edge_to_mesh_idx = meshes.edges_packed_to_mesh_idx() # (sum(E_n), ) | |
| num_edges_per_mesh = meshes.num_edges_per_mesh() # N | |
| # Determine the weight for each edge based on the number of edges in the | |
| # mesh it corresponds to. | |
| # TODO (nikhilar) Find a faster way of computing the weights for each edge | |
| # as this is currently a bottleneck for meshes with a large number of faces. | |
| weights = num_edges_per_mesh.gather(0, edge_to_mesh_idx) | |
| weights = 1.0 / weights.float() | |
| verts_edges = verts_packed[edges_packed] | |
| v0, v1 = verts_edges.unbind(1) | |
| loss = ((v0 - v1).norm(dim=1, p=2) - target_length)**2.0 | |
| loss_vertex = loss * weights | |
| # loss_outlier = torch.topk(loss, 100)[0].mean() | |
| # loss_all = (loss_vertex.sum() + loss_outlier.mean()) / N | |
| loss_all = loss_vertex.sum() / N | |
| return loss_all | |
| def remesh(obj_path, perc, device): | |
| ms = pymeshlab.MeshSet() | |
| ms.load_new_mesh(obj_path) | |
| ms.apply_coord_laplacian_smoothing() | |
| ms.meshing_isotropic_explicit_remeshing(targetlen=pymeshlab.PercentageValue(perc), adaptive=True) | |
| # ms.remeshing_isotropic_explicit_remeshing( | |
| # targetlen=pymeshlab.Percentage(perc), adaptive=True) | |
| ms.save_current_mesh(obj_path.replace("recon", "remesh")) | |
| polished_mesh = trimesh.load_mesh(obj_path.replace("recon", "remesh")) | |
| verts_pr = torch.tensor( | |
| polished_mesh.vertices).float().unsqueeze(0).to(device) | |
| faces_pr = torch.tensor(polished_mesh.faces).long().unsqueeze(0).to(device) | |
| return verts_pr, faces_pr | |
| def possion(mesh, obj_path): | |
| mesh.export(obj_path) | |
| ms = pymeshlab.MeshSet() | |
| ms.load_new_mesh(obj_path) | |
| ms.surface_reconstruction_screened_poisson(depth=10) | |
| ms.set_current_mesh(1) | |
| ms.save_current_mesh(obj_path) | |
| return trimesh.load(obj_path) | |
| def get_mask(tensor, dim): | |
| mask = torch.abs(tensor).sum(dim=dim, keepdims=True) > 0.0 | |
| mask = mask.type_as(tensor) | |
| return mask | |
| def blend_rgb_norm(rgb, norm, mask): | |
| # [0,0,0] or [127,127,127] should be marked as mask | |
| final = rgb * (1 - mask) + norm * (mask) | |
| return final.astype(np.uint8) | |
| def unwrap(image, data): | |
| img_uncrop = uncrop( | |
| np.array( | |
| Image.fromarray(image).resize( | |
| data['uncrop_param']['box_shape'][:2])), | |
| data['uncrop_param']['center'], data['uncrop_param']['scale'], | |
| data['uncrop_param']['crop_shape']) | |
| img_orig = cv2.warpAffine(img_uncrop, | |
| np.linalg.inv(data['uncrop_param']['M'])[:2, :], | |
| data['uncrop_param']['ori_shape'][::-1][1:], | |
| flags=cv2.INTER_CUBIC) | |
| return img_orig | |
| # Losses to smooth / regularize the mesh shape | |
| def update_mesh_shape_prior_losses(mesh, losses): | |
| # and (b) the edge length of the predicted mesh | |
| losses["edge"]['value'] = mesh_edge_loss(mesh) | |
| # mesh normal consistency | |
| losses["nc"]['value'] = mesh_normal_consistency(mesh) | |
| # mesh laplacian smoothing | |
| losses["laplacian"]['value'] = mesh_laplacian_smoothing(mesh, | |
| method="uniform") | |
| def rename(old_dict, old_name, new_name): | |
| new_dict = {} | |
| for key, value in zip(old_dict.keys(), old_dict.values()): | |
| new_key = key if key != old_name else new_name | |
| new_dict[new_key] = old_dict[key] | |
| return new_dict | |
| def load_checkpoint(model, cfg): | |
| model_dict = model.state_dict() | |
| main_dict = {} | |
| normal_dict = {} | |
| device = torch.device(f"cuda:{cfg['test_gpus'][0]}") | |
| if os.path.exists(cfg.resume_path) and cfg.resume_path.endswith("ckpt"): | |
| main_dict = torch.load(cfg.resume_path, | |
| map_location=device)['state_dict'] | |
| main_dict = { | |
| k: v | |
| for k, v in main_dict.items() | |
| if k in model_dict and v.shape == model_dict[k].shape and ( | |
| 'reconEngine' not in k) and ("normal_filter" not in k) and ( | |
| 'voxelization' not in k) | |
| } | |
| print(colored(f"Resume MLP weights from {cfg.resume_path}", 'green')) | |
| if os.path.exists(cfg.normal_path) and cfg.normal_path.endswith("ckpt"): | |
| normal_dict = torch.load(cfg.normal_path, | |
| map_location=device)['state_dict'] | |
| for key in normal_dict.keys(): | |
| normal_dict = rename(normal_dict, key, | |
| key.replace("netG", "netG.normal_filter")) | |
| normal_dict = { | |
| k: v | |
| for k, v in normal_dict.items() | |
| if k in model_dict and v.shape == model_dict[k].shape | |
| } | |
| print(colored(f"Resume normal model from {cfg.normal_path}", 'green')) | |
| model_dict.update(main_dict) | |
| model_dict.update(normal_dict) | |
| model.load_state_dict(model_dict) | |
| model.netG = model.netG.to(device) | |
| model.reconEngine = model.reconEngine.to(device) | |
| model.netG.training = False | |
| model.netG.eval() | |
| del main_dict | |
| del normal_dict | |
| del model_dict | |
| return model | |
| def read_smpl_constants(folder): | |
| """Load smpl vertex code""" | |
| smpl_vtx_std = np.loadtxt(os.path.join(folder, 'vertices.txt')) | |
| min_x = np.min(smpl_vtx_std[:, 0]) | |
| max_x = np.max(smpl_vtx_std[:, 0]) | |
| min_y = np.min(smpl_vtx_std[:, 1]) | |
| max_y = np.max(smpl_vtx_std[:, 1]) | |
| min_z = np.min(smpl_vtx_std[:, 2]) | |
| max_z = np.max(smpl_vtx_std[:, 2]) | |
| smpl_vtx_std[:, 0] = (smpl_vtx_std[:, 0] - min_x) / (max_x - min_x) | |
| smpl_vtx_std[:, 1] = (smpl_vtx_std[:, 1] - min_y) / (max_y - min_y) | |
| smpl_vtx_std[:, 2] = (smpl_vtx_std[:, 2] - min_z) / (max_z - min_z) | |
| smpl_vertex_code = np.float32(np.copy(smpl_vtx_std)) | |
| """Load smpl faces & tetrahedrons""" | |
| smpl_faces = np.loadtxt(os.path.join(folder, 'faces.txt'), | |
| dtype=np.int32) - 1 | |
| smpl_face_code = (smpl_vertex_code[smpl_faces[:, 0]] + | |
| smpl_vertex_code[smpl_faces[:, 1]] + | |
| smpl_vertex_code[smpl_faces[:, 2]]) / 3.0 | |
| smpl_tetras = np.loadtxt(os.path.join(folder, 'tetrahedrons.txt'), | |
| dtype=np.int32) - 1 | |
| return smpl_vertex_code, smpl_face_code, smpl_faces, smpl_tetras | |
| def surface_field_deformation(xyz, de_nn_verts, de_nn_normals, ori_nn_verts, ori_nn_normals): | |
| ''' | |
| xyz: [B, N, 3] | |
| de_nn_verts: [B, N, 3] | |
| de_nn_normals: [B, N, 3] | |
| ori_nn_verts: [B, N, 3] | |
| ori_nn_normals: [B, N, 3] | |
| ''' | |
| vector=xyz-de_nn_verts # [B, N, 3] | |
| delta=torch.sum(vector*de_nn_normals, dim=-1, keepdim=True)*ori_nn_normals | |
| ori_xyz=ori_nn_verts+delta | |
| return ori_xyz # the deformed xyz | |
| def feat_select(feat, select): | |
| # feat [B, featx2, N] | |
| # select [B, 1, N] | |
| # return [B, feat, N] | |
| dim = feat.shape[1] // 2 | |
| idx = torch.tile((1-select), (1, dim, 1))*dim + \ | |
| torch.arange(0, dim).unsqueeze(0).unsqueeze(2).type_as(select) | |
| feat_select = torch.gather(feat, 1, idx.long()) | |
| return feat_select | |
| def get_visibility_color(xy, z, faces): | |
| """get the visibility of vertices | |
| Args: | |
| xy (torch.tensor): [N,2] | |
| z (torch.tensor): [N,1] | |
| faces (torch.tensor): [N,3] | |
| size (int): resolution of rendered image | |
| """ | |
| xyz = torch.cat((xy, -z), dim=1) | |
| xyz = (xyz + 1.0) / 2.0 | |
| faces = faces.long() | |
| rasterizer = Pytorch3dRasterizer(image_size=2**12) | |
| meshes_screen = Meshes(verts=xyz[None, ...], faces=faces[None, ...]) | |
| raster_settings = rasterizer.raster_settings | |
| pix_to_face, zbuf, bary_coords, dists = rasterize_meshes( | |
| meshes_screen, | |
| image_size=raster_settings.image_size, | |
| blur_radius=raster_settings.blur_radius, | |
| faces_per_pixel=raster_settings.faces_per_pixel, | |
| bin_size=raster_settings.bin_size, | |
| max_faces_per_bin=raster_settings.max_faces_per_bin, | |
| perspective_correct=raster_settings.perspective_correct, | |
| cull_backfaces=raster_settings.cull_backfaces, | |
| ) | |
| vis_vertices_id = torch.unique(faces[torch.unique(pix_to_face), :]) | |
| vis_mask = torch.zeros(size=(z.shape[0], 1)) | |
| vis_mask[vis_vertices_id] = 1.0 | |
| # 新增的部分: 检测边缘像素 | |
| edge_mask = torch.zeros_like(pix_to_face) | |
| offset=1 | |
| for i in range(-1-offset, 2+offset): | |
| for j in range(-1-offset, 2+offset): | |
| if i == 0 and j == 0: | |
| continue | |
| shifted = torch.roll(pix_to_face, shifts=(i,j), dims=(0,1)) | |
| edge_mask = torch.logical_or(edge_mask, shifted == -1) | |
| # 更新可见性掩码 | |
| edge_faces = torch.unique(pix_to_face[edge_mask]) | |
| edge_vertices = torch.unique(faces[edge_faces]) | |
| vis_mask[edge_vertices] = 0.0 | |
| return vis_mask | |
| def get_visibility(xy, z, faces): | |
| """get the visibility of vertices | |
| Args: | |
| xy (torch.tensor): [N,2] | |
| z (torch.tensor): [N,1] | |
| faces (torch.tensor): [N,3] | |
| size (int): resolution of rendered image | |
| """ | |
| xyz = torch.cat((xy, -z), dim=1) | |
| xyz = (xyz + 1.0) / 2.0 | |
| faces = faces.long() | |
| rasterizer = Pytorch3dRasterizer(image_size=2**12) | |
| meshes_screen = Meshes(verts=xyz[None, ...], faces=faces[None, ...]) | |
| raster_settings = rasterizer.raster_settings | |
| pix_to_face, zbuf, bary_coords, dists = rasterize_meshes( | |
| meshes_screen, | |
| image_size=raster_settings.image_size, | |
| blur_radius=raster_settings.blur_radius, | |
| faces_per_pixel=raster_settings.faces_per_pixel, | |
| bin_size=raster_settings.bin_size, | |
| max_faces_per_bin=raster_settings.max_faces_per_bin, | |
| perspective_correct=raster_settings.perspective_correct, | |
| cull_backfaces=raster_settings.cull_backfaces, | |
| ) | |
| vis_vertices_id = torch.unique(faces[torch.unique(pix_to_face), :]) | |
| vis_mask = torch.zeros(size=(z.shape[0], 1)) | |
| vis_mask[vis_vertices_id] = 1.0 | |
| # print("------------------------\n") | |
| # print(f"keep points : {vis_mask.sum()/len(vis_mask)}") | |
| return vis_mask | |
| def barycentric_coordinates_of_projection(points, vertices): | |
| ''' https://github.com/MPI-IS/mesh/blob/master/mesh/geometry/barycentric_coordinates_of_projection.py | |
| ''' | |
| """Given a point, gives projected coords of that point to a triangle | |
| in barycentric coordinates. | |
| See | |
| **Heidrich**, Computing the Barycentric Coordinates of a Projected Point, JGT 05 | |
| at http://www.cs.ubc.ca/~heidrich/Papers/JGT.05.pdf | |
| :param p: point to project. [B, 3] | |
| :param v0: first vertex of triangles. [B, 3] | |
| :returns: barycentric coordinates of ``p``'s projection in triangle defined by ``q``, ``u``, ``v`` | |
| vectorized so ``p``, ``q``, ``u``, ``v`` can all be ``3xN`` | |
| """ | |
| #(p, q, u, v) | |
| v0, v1, v2 = vertices[:, 0], vertices[:, 1], vertices[:, 2] | |
| p = points | |
| q = v0 | |
| u = v1 - v0 | |
| v = v2 - v0 | |
| n = torch.cross(u, v) | |
| s = torch.sum(n * n, dim=1) | |
| # If the triangle edges are collinear, cross-product is zero, | |
| # which makes "s" 0, which gives us divide by zero. So we | |
| # make the arbitrary choice to set s to epsv (=numpy.spacing(1)), | |
| # the closest thing to zero | |
| s[s == 0] = 1e-6 | |
| oneOver4ASquared = 1.0 / s | |
| w = p - q | |
| b2 = torch.sum(torch.cross(u, w) * n, dim=1) * oneOver4ASquared | |
| b1 = torch.sum(torch.cross(w, v) * n, dim=1) * oneOver4ASquared | |
| weights = torch.stack((1 - b1 - b2, b1, b2), dim=-1) | |
| # check barycenric weights | |
| # p_n = v0*weights[:,0:1] + v1*weights[:,1:2] + v2*weights[:,2:3] | |
| return weights | |
| def cal_sdf_batch(verts, faces, cmaps, vis, points): | |
| # verts [B, N_vert, 3] | |
| # faces [B, N_face, 3] | |
| # triangles [B, N_face, 3, 3] | |
| # points [B, N_point, 3] | |
| # cmaps [B, N_vert, 3] | |
| Bsize = points.shape[0] | |
| normals = Meshes(verts, faces).verts_normals_padded() | |
| # SMPL has watertight mesh, but SMPL-X has two eyeballs and open mouth | |
| # 1. remove eye_ball faces from SMPL-X: 9928-9383, 10474-9929 | |
| # 2. fill mouth holes with 30 more faces | |
| if verts.shape[1] == 10475: | |
| faces = faces[:, ~SMPLX().smplx_eyeball_fid_mask] | |
| mouth_faces = torch.as_tensor( | |
| SMPLX().smplx_mouth_fid).unsqueeze(0).repeat(Bsize, 1, | |
| 1).to(faces.device) | |
| faces = torch.cat([faces, mouth_faces], dim=1) | |
| triangles = face_vertices(verts, faces) | |
| normals = face_vertices(normals, faces) | |
| cmaps = face_vertices(cmaps, faces) | |
| vis = face_vertices(vis, faces) | |
| residues, pts_ind, _ = point_to_mesh_distance(points, triangles) | |
| closest_triangles = torch.gather( | |
| triangles, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, | |
| 3)).view(-1, 3, 3) | |
| closest_normals = torch.gather( | |
| normals, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, | |
| 3)).view(-1, 3, 3) | |
| closest_cmaps = torch.gather( | |
| cmaps, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, | |
| 3)).view(-1, 3, 3) | |
| closest_vis = torch.gather(vis, 1, pts_ind[:, :, None, | |
| None].expand(-1, -1, 3, | |
| 1)).view(-1, 3, 1) | |
| bary_weights = barycentric_coordinates_of_projection( | |
| points.view(-1, 3), closest_triangles) | |
| pts_cmap = (closest_cmaps * bary_weights[:, :, None]).sum(1).unsqueeze(0) | |
| pts_vis = (closest_vis * | |
| bary_weights[:, :, None]).sum(1).unsqueeze(0).ge(1e-1) | |
| pts_norm = (closest_normals * | |
| bary_weights[:, :, None]).sum(1).unsqueeze(0) * torch.tensor( | |
| [-1.0, 1.0, -1.0]).type_as(normals) | |
| pts_norm = F.normalize(pts_norm, dim=2) | |
| pts_dist = torch.sqrt(residues) / torch.sqrt(torch.tensor(3)) | |
| pts_signs = 2.0 * (check_sign(verts, faces[0], points).float() - 0.5) | |
| pts_sdf = (pts_dist * pts_signs).unsqueeze(-1) | |
| return pts_sdf.view(Bsize, -1, | |
| 1), pts_norm.view(Bsize, -1, 3), pts_cmap.view( | |
| Bsize, -1, 3), pts_vis.view(Bsize, -1, 1) | |
| def orthogonal(points, calibrations, transforms=None): | |
| ''' | |
| Compute the orthogonal projections of 3D points into the image plane by given projection matrix | |
| :param points: [B, 3, N] Tensor of 3D points | |
| :param calibrations: [B, 3, 4] Tensor of projection matrix | |
| :param transforms: [B, 2, 3] Tensor of image transform matrix | |
| :return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane | |
| ''' | |
| rot = calibrations[:, :3, :3] | |
| trans = calibrations[:, :3, 3:4] | |
| pts = torch.baddbmm(trans, rot, points) # [B, 3, N] | |
| if transforms is not None: | |
| scale = transforms[:2, :2] | |
| shift = transforms[:2, 2:3] | |
| pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :]) | |
| return pts | |
| def projection(points, calib): | |
| if torch.is_tensor(points): | |
| calib = torch.as_tensor(calib) if not torch.is_tensor(calib) else calib | |
| return torch.mm(calib[:3, :3], points.T).T + calib[:3, 3] | |
| else: | |
| return np.matmul(calib[:3, :3], points.T).T + calib[:3, 3] | |
| def load_calib(calib_path): | |
| calib_data = np.loadtxt(calib_path, dtype=float) | |
| extrinsic = calib_data[:4, :4] | |
| intrinsic = calib_data[4:8, :4] | |
| calib_mat = np.matmul(intrinsic, extrinsic) | |
| calib_mat = torch.from_numpy(calib_mat).float() | |
| return calib_mat | |
| def load_obj_mesh_for_Hoppe(mesh_file): | |
| vertex_data = [] | |
| face_data = [] | |
| if isinstance(mesh_file, str): | |
| f = open(mesh_file, "r") | |
| else: | |
| f = mesh_file | |
| for line in f: | |
| if isinstance(line, bytes): | |
| line = line.decode("utf-8") | |
| if line.startswith('#'): | |
| continue | |
| values = line.split() | |
| if not values: | |
| continue | |
| if values[0] == 'v': | |
| v = list(map(float, values[1:4])) | |
| vertex_data.append(v) | |
| elif values[0] == 'f': | |
| # quad mesh | |
| if len(values) > 4: | |
| f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) | |
| face_data.append(f) | |
| f = list( | |
| map(lambda x: int(x.split('/')[0]), | |
| [values[3], values[4], values[1]])) | |
| face_data.append(f) | |
| # tri mesh | |
| else: | |
| f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) | |
| face_data.append(f) | |
| vertices = np.array(vertex_data) | |
| faces = np.array(face_data) | |
| faces[faces > 0] -= 1 | |
| normals, _ = compute_normal(vertices, faces) | |
| return vertices, normals, faces | |
| def load_obj_mesh_with_color(mesh_file): | |
| vertex_data = [] | |
| color_data = [] | |
| face_data = [] | |
| if isinstance(mesh_file, str): | |
| f = open(mesh_file, "r") | |
| else: | |
| f = mesh_file | |
| for line in f: | |
| if isinstance(line, bytes): | |
| line = line.decode("utf-8") | |
| if line.startswith('#'): | |
| continue | |
| values = line.split() | |
| if not values: | |
| continue | |
| if values[0] == 'v': | |
| v = list(map(float, values[1:4])) | |
| vertex_data.append(v) | |
| c = list(map(float, values[4:7])) | |
| color_data.append(c) | |
| elif values[0] == 'f': | |
| # quad mesh | |
| if len(values) > 4: | |
| f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) | |
| face_data.append(f) | |
| f = list( | |
| map(lambda x: int(x.split('/')[0]), | |
| [values[3], values[4], values[1]])) | |
| face_data.append(f) | |
| # tri mesh | |
| else: | |
| f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) | |
| face_data.append(f) | |
| vertices = np.array(vertex_data) | |
| colors = np.array(color_data) | |
| faces = np.array(face_data) | |
| faces[faces > 0] -= 1 | |
| return vertices, colors, faces | |
| def load_obj_mesh(mesh_file, with_normal=False, with_texture=False): | |
| vertex_data = [] | |
| norm_data = [] | |
| uv_data = [] | |
| face_data = [] | |
| face_norm_data = [] | |
| face_uv_data = [] | |
| if isinstance(mesh_file, str): | |
| f = open(mesh_file, "r") | |
| else: | |
| f = mesh_file | |
| for line in f: | |
| if isinstance(line, bytes): | |
| line = line.decode("utf-8") | |
| if line.startswith('#'): | |
| continue | |
| values = line.split() | |
| if not values: | |
| continue | |
| if values[0] == 'v': | |
| v = list(map(float, values[1:4])) | |
| vertex_data.append(v) | |
| elif values[0] == 'vn': | |
| vn = list(map(float, values[1:4])) | |
| norm_data.append(vn) | |
| elif values[0] == 'vt': | |
| vt = list(map(float, values[1:3])) | |
| uv_data.append(vt) | |
| elif values[0] == 'f': | |
| # quad mesh | |
| if len(values) > 4: | |
| f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) | |
| face_data.append(f) | |
| f = list( | |
| map(lambda x: int(x.split('/')[0]), | |
| [values[3], values[4], values[1]])) | |
| face_data.append(f) | |
| # tri mesh | |
| else: | |
| f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) | |
| face_data.append(f) | |
| # deal with texture | |
| if len(values[1].split('/')) >= 2: | |
| # quad mesh | |
| if len(values) > 4: | |
| f = list(map(lambda x: int(x.split('/')[1]), values[1:4])) | |
| face_uv_data.append(f) | |
| f = list( | |
| map(lambda x: int(x.split('/')[1]), | |
| [values[3], values[4], values[1]])) | |
| face_uv_data.append(f) | |
| # tri mesh | |
| elif len(values[1].split('/')[1]) != 0: | |
| f = list(map(lambda x: int(x.split('/')[1]), values[1:4])) | |
| face_uv_data.append(f) | |
| # deal with normal | |
| if len(values[1].split('/')) == 3: | |
| # quad mesh | |
| if len(values) > 4: | |
| f = list(map(lambda x: int(x.split('/')[2]), values[1:4])) | |
| face_norm_data.append(f) | |
| f = list( | |
| map(lambda x: int(x.split('/')[2]), | |
| [values[3], values[4], values[1]])) | |
| face_norm_data.append(f) | |
| # tri mesh | |
| elif len(values[1].split('/')[2]) != 0: | |
| f = list(map(lambda x: int(x.split('/')[2]), values[1:4])) | |
| face_norm_data.append(f) | |
| vertices = np.array(vertex_data) | |
| faces = np.array(face_data) | |
| faces[faces > 0] -= 1 | |
| if with_texture and with_normal: | |
| uvs = np.array(uv_data) | |
| face_uvs = np.array(face_uv_data) | |
| face_uvs[face_uvs > 0] -= 1 | |
| norms = np.array(norm_data) | |
| if norms.shape[0] == 0: | |
| norms, _ = compute_normal(vertices, faces) | |
| face_normals = faces | |
| else: | |
| norms = normalize_v3(norms) | |
| face_normals = np.array(face_norm_data) | |
| face_normals[face_normals > 0] -= 1 | |
| return vertices, faces, norms, face_normals, uvs, face_uvs | |
| if with_texture: | |
| uvs = np.array(uv_data) | |
| face_uvs = np.array(face_uv_data) - 1 | |
| return vertices, faces, uvs, face_uvs | |
| if with_normal: | |
| norms = np.array(norm_data) | |
| norms = normalize_v3(norms) | |
| face_normals = np.array(face_norm_data) - 1 | |
| return vertices, faces, norms, face_normals | |
| return vertices, faces | |
| def normalize_v3(arr): | |
| ''' Normalize a numpy array of 3 component vectors shape=(n,3) ''' | |
| lens = np.sqrt(arr[:, 0]**2 + arr[:, 1]**2 + arr[:, 2]**2) | |
| eps = 0.00000001 | |
| lens[lens < eps] = eps | |
| arr[:, 0] /= lens | |
| arr[:, 1] /= lens | |
| arr[:, 2] /= lens | |
| return arr | |
| def compute_normal(vertices, faces): | |
| # Create a zeroed array with the same type and shape as our vertices i.e., per vertex normal | |
| vert_norms = np.zeros(vertices.shape, dtype=vertices.dtype) | |
| # Create an indexed view into the vertex array using the array of three indices for triangles | |
| tris = vertices[faces] | |
| # Calculate the normal for all the triangles, by taking the cross product of the vectors v1-v0, and v2-v0 in each triangle | |
| face_norms = np.cross(tris[::, 1] - tris[::, 0], tris[::, 2] - tris[::, 0]) | |
| # n is now an array of normals per triangle. The length of each normal is dependent the vertices, | |
| # we need to normalize these, so that our next step weights each normal equally. | |
| normalize_v3(face_norms) | |
| # now we have a normalized array of normals, one per triangle, i.e., per triangle normals. | |
| # But instead of one per triangle (i.e., flat shading), we add to each vertex in that triangle, | |
| # the triangles' normal. Multiple triangles would then contribute to every vertex, so we need to normalize again afterwards. | |
| # The cool part, we can actually add the normals through an indexed view of our (zeroed) per vertex normal array | |
| vert_norms[faces[:, 0]] += face_norms | |
| vert_norms[faces[:, 1]] += face_norms | |
| vert_norms[faces[:, 2]] += face_norms | |
| normalize_v3(vert_norms) | |
| return vert_norms, face_norms | |
| def save_obj_mesh(mesh_path, verts, faces): | |
| file = open(mesh_path, 'w') | |
| for v in verts: | |
| file.write('v %.4f %.4f %.4f\n' % (v[0], v[1], v[2])) | |
| for f in faces: | |
| f_plus = f + 1 | |
| file.write('f %d %d %d\n' % (f_plus[0], f_plus[1], f_plus[2])) | |
| file.close() | |
| def save_obj_mesh_with_color(mesh_path, verts, faces, colors): | |
| file = open(mesh_path, 'w') | |
| for idx, v in enumerate(verts): | |
| c = colors[idx] | |
| file.write('v %.4f %.4f %.4f %.4f %.4f %.4f\n' % | |
| (v[0], v[1], v[2], c[0], c[1], c[2])) | |
| for f in faces: | |
| f_plus = f + 1 | |
| file.write('f %d %d %d\n' % (f_plus[0], f_plus[1], f_plus[2])) | |
| file.close() | |
| def calculate_mIoU(outputs, labels): | |
| SMOOTH = 1e-6 | |
| outputs = outputs.int() | |
| labels = labels.int() | |
| intersection = ( | |
| outputs | |
| & labels).float().sum() # Will be zero if Truth=0 or Prediction=0 | |
| union = (outputs | labels).float().sum() # Will be zzero if both are 0 | |
| iou = (intersection + SMOOTH) / (union + SMOOTH | |
| ) # We smooth our devision to avoid 0/0 | |
| thresholded = torch.clamp( | |
| 20 * (iou - 0.5), 0, | |
| 10).ceil() / 10 # This is equal to comparing with thresolds | |
| return thresholded.mean().detach().cpu().numpy( | |
| ) # Or thresholded.mean() if you are interested in average across the batch | |
| def mask_filter(mask, number=1000): | |
| """only keep {number} True items within a mask | |
| Args: | |
| mask (bool array): [N, ] | |
| number (int, optional): total True item. Defaults to 1000. | |
| """ | |
| true_ids = np.where(mask)[0] | |
| keep_ids = np.random.choice(true_ids, size=number) | |
| filter_mask = np.isin(np.arange(len(mask)), keep_ids) | |
| return filter_mask | |
| def query_mesh(path): | |
| verts, faces_idx, _ = load_obj(path) | |
| return verts, faces_idx.verts_idx | |
| def add_alpha(colors, alpha=0.7): | |
| colors_pad = np.pad(colors, ((0, 0), (0, 1)), | |
| mode='constant', | |
| constant_values=alpha) | |
| return colors_pad | |
| def get_optim_grid_image(per_loop_lst, loss=None, nrow=4, type='smpl'): | |
| font_path = os.path.join(os.path.dirname(__file__), "tbfo.ttf") | |
| font = ImageFont.truetype(font_path, 30) | |
| grid_img = torchvision.utils.make_grid(torch.cat(per_loop_lst, dim=0), | |
| nrow=nrow) | |
| grid_img = Image.fromarray( | |
| ((grid_img.permute(1, 2, 0).detach().cpu().numpy() + 1.0) * 0.5 * | |
| 255.0).astype(np.uint8)) | |
| # add text | |
| draw = ImageDraw.Draw(grid_img) | |
| grid_size = 512 | |
| if loss is not None: | |
| draw.text((10, 5), f"error: {loss:.3f}", (255, 0, 0), font=font) | |
| if type == 'smpl': | |
| for col_id, col_txt in enumerate([ | |
| 'image', 'smpl-norm(render)', 'cloth-norm(pred)', 'diff-norm', | |
| 'diff-mask' | |
| ]): | |
| draw.text((10 + (col_id * grid_size), 5), | |
| col_txt, (255, 0, 0), | |
| font=font) | |
| elif type == 'cloth': | |
| for col_id, col_txt in enumerate( | |
| ['cloth-norm(recon)']): | |
| draw.text((10 + (col_id * grid_size), 5), | |
| col_txt, (255, 0, 0), | |
| font=font) | |
| for col_id, col_txt in enumerate(['0', '90', '180', '270']): | |
| draw.text((10 + (col_id * grid_size), grid_size * 2 + 5), | |
| col_txt, (255, 0, 0), | |
| font=font) | |
| else: | |
| print(f"{type} should be 'smpl' or 'cloth'") | |
| grid_img = grid_img.resize((grid_img.size[0], grid_img.size[1]), | |
| Image.LANCZOS) | |
| return grid_img | |
| def clean_mesh(verts, faces): | |
| device = verts.device | |
| mesh_lst = trimesh.Trimesh(verts.detach().cpu().numpy(), | |
| faces.detach().cpu().numpy()) | |
| mesh_lst = mesh_lst.split(only_watertight=False) | |
| comp_num = [mesh.vertices.shape[0] for mesh in mesh_lst] | |
| mesh_clean = mesh_lst[comp_num.index(max(comp_num))] | |
| final_verts = torch.as_tensor(mesh_clean.vertices).float().to(device) | |
| final_faces = torch.as_tensor(mesh_clean.faces).int().to(device) | |
| return final_verts, final_faces | |
| def merge_mesh(verts_A, faces_A, verts_B, faces_B, color=False): | |
| sep_mesh = trimesh.Trimesh(np.concatenate([verts_A, verts_B], axis=0), | |
| np.concatenate( | |
| [faces_A, faces_B + faces_A.max() + 1], | |
| axis=0), | |
| maintain_order=True, | |
| process=False) | |
| if color: | |
| colors = np.ones_like(sep_mesh.vertices) | |
| colors[:verts_A.shape[0]] *= np.array([255.0, 0.0, 0.0]) | |
| colors[verts_A.shape[0]:] *= np.array([0.0, 255.0, 0.0]) | |
| sep_mesh.visual.vertex_colors = colors | |
| # union_mesh = trimesh.boolean.union([trimesh.Trimesh(verts_A, faces_A), | |
| # trimesh.Trimesh(verts_B, faces_B)], engine='blender') | |
| return sep_mesh | |
| def mesh_move(mesh_lst, step, scale=1.0): | |
| trans = np.array([1.0, 0.0, 0.0]) * step | |
| resize_matrix = trimesh.transformations.scale_and_translate( | |
| scale=(scale), translate=trans) | |
| results = [] | |
| for mesh in mesh_lst: | |
| mesh.apply_transform(resize_matrix) | |
| results.append(mesh) | |
| return results | |
| def rescale_smpl(fitted_path, scale=100, translate=(0, 0, 0)): | |
| fitted_body = trimesh.load(fitted_path, | |
| process=False, | |
| maintain_order=True, | |
| skip_materials=True) | |
| resize_matrix = trimesh.transformations.scale_and_translate( | |
| scale=(scale), translate=translate) | |
| fitted_body.apply_transform(resize_matrix) | |
| return np.array(fitted_body.vertices) | |
| class SMPLX(): | |
| def __init__(self): | |
| self.current_dir = "smpl_related" # new smplx file in ECON folder | |
| self.smpl_verts_path = osp.join(self.current_dir, | |
| "smpl_data/smpl_verts.npy") | |
| self.smpl_faces_path = osp.join(self.current_dir, | |
| "smpl_data/smpl_faces.npy") | |
| self.smplx_verts_path = osp.join(self.current_dir, | |
| "smpl_data/smplx_verts.npy") | |
| self.smplx_faces_path = osp.join(self.current_dir, | |
| "smpl_data/smplx_faces.npy") | |
| self.cmap_vert_path = osp.join(self.current_dir, | |
| "smpl_data/smplx_cmap.npy") | |
| self.smplx_to_smplx_path = osp.join(self.current_dir, | |
| "smpl_data/smplx_to_smpl.pkl") | |
| self.smplx_eyeball_fid = osp.join(self.current_dir, | |
| "smpl_data/eyeball_fid.npy") | |
| self.smplx_fill_mouth_fid = osp.join(self.current_dir, | |
| "smpl_data/fill_mouth_fid.npy") | |
| self.smplx_faces = np.load(self.smplx_faces_path) | |
| self.smplx_verts = np.load(self.smplx_verts_path) | |
| self.smpl_verts = np.load(self.smpl_verts_path) | |
| self.smpl_faces = np.load(self.smpl_faces_path) | |
| self.smplx_eyeball_fid_mask = np.load(self.smplx_eyeball_fid) | |
| self.smplx_mouth_fid = np.load(self.smplx_fill_mouth_fid) | |
| self.smplx_to_smpl = cPickle.load(open(self.smplx_to_smplx_path, 'rb')) | |
| self.model_dir = osp.join(self.current_dir, "models") | |
| # self.tedra_dir = osp.join(self.current_dir, "../tedra_data") | |
| # copy from econ | |
| self.smplx_flame_vid_path = osp.join( | |
| self.current_dir, "smpl_data/FLAME_SMPLX_vertex_ids.npy" | |
| ) | |
| self.smplx_mano_vid_path = osp.join(self.current_dir, "smpl_data/MANO_SMPLX_vertex_ids.pkl") | |
| self.smpl_vert_seg_path = osp.join( | |
| self.current_dir, "smpl_vert_segmentation.json" | |
| ) | |
| self.front_flame_path = osp.join(self.current_dir, "smpl_data/FLAME_face_mask_ids.npy") | |
| self.smplx_vertex_lmkid_path = osp.join( | |
| self.current_dir, "smpl_data/smplx_vertex_lmkid.npy" | |
| ) | |
| self.smplx_vertex_lmkid = np.load(self.smplx_vertex_lmkid_path) | |
| self.smpl_vert_seg = json.load(open(self.smpl_vert_seg_path)) | |
| self.smpl_mano_vid = np.concatenate( | |
| [ | |
| self.smpl_vert_seg["rightHand"], self.smpl_vert_seg["rightHandIndex1"], | |
| self.smpl_vert_seg["leftHand"], self.smpl_vert_seg["leftHandIndex1"] | |
| ] | |
| ) | |
| self.smplx_mano_vid_dict = np.load(self.smplx_mano_vid_path, allow_pickle=True) | |
| self.smplx_mano_vid = np.concatenate( | |
| [self.smplx_mano_vid_dict["left_hand"], self.smplx_mano_vid_dict["right_hand"]] | |
| ) | |
| self.smplx_flame_vid = np.load(self.smplx_flame_vid_path, allow_pickle=True) | |
| self.smplx_front_flame_vid = self.smplx_flame_vid[np.load(self.front_flame_path)] | |
| # hands | |
| self.smplx_mano_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_( | |
| 0, torch.tensor(self.smplx_mano_vid), 1.0 | |
| ) | |
| self.smpl_mano_vertex_mask = torch.zeros(self.smpl_verts.shape[0], ).index_fill_( | |
| 0, torch.tensor(self.smpl_mano_vid), 1.0 | |
| ) | |
| # face | |
| self.front_flame_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_( | |
| 0, torch.tensor(self.smplx_front_flame_vid), 1.0 | |
| ) | |
| self.eyeball_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_( | |
| 0, torch.tensor(self.smplx_faces[self.smplx_eyeball_fid_mask].flatten()), 1.0 | |
| ) | |
| self.ghum_smpl_pairs = torch.tensor( | |
| [ | |
| (0, 24), (2, 26), (5, 25), (7, 28), (8, 27), (11, 16), (12, 17), (13, 18), (14, 19), | |
| (15, 20), (16, 21), (17, 39), (18, 44), (19, 36), (20, 41), (21, 35), (22, 40), | |
| (23, 1), (24, 2), (25, 4), (26, 5), (27, 7), (28, 8), (29, 31), (30, 34), (31, 29), | |
| (32, 32) | |
| ] | |
| ).long() | |
| # smpl-smplx correspondence | |
| self.smpl_joint_ids_24 = np.arange(22).tolist() + [68, 73] | |
| self.smpl_joint_ids_24_pixie = np.arange(22).tolist() + [61 + 68, 72 + 68] | |
| self.smpl_joint_ids_45 = np.arange(22).tolist() + [68, 73] + np.arange(55, 76).tolist() | |
| self.extra_joint_ids = np.array( | |
| [ | |
| 61, 72, 66, 69, 58, 68, 57, 56, 64, 59, 67, 75, 70, 65, 60, 61, 63, 62, 76, 71, 72, | |
| 74, 73 | |
| ] | |
| ) | |
| self.extra_joint_ids += 68 | |
| self.smpl_joint_ids_45_pixie = (np.arange(22).tolist() + self.extra_joint_ids.tolist()) | |
| def cmap_smpl_vids(self, type): | |
| # keys: | |
| # closest_faces - [6890, 3] with smplx vert_idx | |
| # bc - [6890, 3] with barycentric weights | |
| cmap_smplx = torch.as_tensor(np.load(self.cmap_vert_path)).float() | |
| if type == 'smplx': | |
| return cmap_smplx | |
| elif type == 'smpl': | |
| bc = torch.as_tensor(self.smplx_to_smpl['bc'].astype(np.float32)) | |
| closest_faces = self.smplx_to_smpl['closest_faces'].astype( | |
| np.int32) | |
| cmap_smpl = torch.einsum('bij, bi->bj', cmap_smplx[closest_faces], | |
| bc) | |
| return cmap_smpl | |
| # copy from ECON | |
| def apply_face_mask(mesh, face_mask): | |
| mesh.update_faces(face_mask) | |
| mesh.remove_unreferenced_vertices() | |
| return mesh | |
| def apply_vertex_mask(mesh, vertex_mask): | |
| faces_mask = vertex_mask[mesh.faces].any(dim=1) | |
| mesh = apply_face_mask(mesh, faces_mask) | |
| return mesh | |
| def apply_vertex_face_mask(mesh, vertex_mask, face_mask): | |
| faces_mask = vertex_mask[mesh.faces].any(dim=1) * torch.tensor(face_mask) | |
| mesh.update_faces(faces_mask) | |
| mesh.remove_unreferenced_vertices() | |
| return mesh | |
| def clean_floats(mesh): | |
| thres = mesh.vertices.shape[0] * 1e-2 | |
| mesh_lst = mesh.split(only_watertight=False) | |
| clean_mesh_lst = [mesh for mesh in mesh_lst if mesh.vertices.shape[0] > thres] | |
| return sum(clean_mesh_lst) | |
| def isin(input, test_elements): | |
| # 扩展输入和测试元素的维度以进行广播 | |
| input = input.unsqueeze(-1) | |
| test_elements = test_elements.unsqueeze(0) | |
| # 比较两个张量的元素 | |
| comparison_result = torch.eq(input, test_elements) | |
| # 沿着新添加的维度进行求和,以检查每个输入元素是否在测试元素中 | |
| isin_result = comparison_result.sum(-1).bool() | |
| return isin_result | |
| def part_removal(full_mesh, part_mesh, thres, device, smpl_obj, region, clean=True): | |
| smpl_tree = cKDTree(smpl_obj.vertices) | |
| SMPL_container = SMPLX() | |
| from lib.dataset.PointFeat import ECON_PointFeat | |
| part_extractor = ECON_PointFeat( | |
| torch.tensor(part_mesh.vertices).unsqueeze(0).to(device), | |
| torch.tensor(part_mesh.faces).unsqueeze(0).to(device) | |
| ) | |
| (part_dist, _) = part_extractor.query(torch.tensor(full_mesh.vertices).unsqueeze(0).to(device)) | |
| remove_mask = part_dist < thres | |
| if region == "hand": | |
| _, idx = smpl_tree.query(full_mesh.vertices, k=1) | |
| full_lmkid = SMPL_container.smplx_vertex_lmkid[idx] | |
| remove_mask = torch.logical_and( | |
| remove_mask, | |
| torch.tensor(full_lmkid >= 20).type_as(remove_mask).unsqueeze(0) | |
| ) | |
| elif region == "face": | |
| _, idx = smpl_tree.query(full_mesh.vertices, k=5) | |
| face_space_mask = isin( | |
| torch.tensor(idx), torch.tensor(SMPL_container.smplx_front_flame_vid) | |
| ) | |
| remove_mask = torch.logical_and( | |
| remove_mask, | |
| face_space_mask.any(dim=1).type_as(remove_mask).unsqueeze(0) | |
| ) | |
| BNI_part_mask = ~(remove_mask).flatten()[full_mesh.faces].any(dim=1) | |
| full_mesh.update_faces(BNI_part_mask.detach().cpu()) | |
| full_mesh.remove_unreferenced_vertices() | |
| if clean: | |
| full_mesh = clean_floats(full_mesh) | |
| return full_mesh | |
| def keep_largest(mesh): | |
| mesh_lst = mesh.split(only_watertight=False) | |
| keep_mesh = mesh_lst[0] | |
| for mesh in mesh_lst: | |
| if mesh.vertices.shape[0] > keep_mesh.vertices.shape[0]: | |
| keep_mesh = mesh | |
| return keep_mesh | |
| def poisson(mesh, obj_path, depth=10, decimation=True): | |
| pcd_path = obj_path[:-4] + "_soups.ply" | |
| assert (mesh.vertex_normals.shape[1] == 3) | |
| mesh.export(pcd_path) | |
| pcl = o3d.io.read_point_cloud(pcd_path) | |
| with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Error) as cm: | |
| mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( | |
| pcl, depth=depth, n_threads=6 | |
| ) | |
| os.remove(pcd_path) | |
| # only keep the largest component | |
| largest_mesh = keep_largest(trimesh.Trimesh(np.array(mesh.vertices), np.array(mesh.triangles))) | |
| if decimation: | |
| # mesh decimation for faster rendering | |
| low_res_mesh = largest_mesh.simplify_quadratic_decimation(50000) | |
| return low_res_mesh | |
| else: | |
| return largest_mesh | |