Spaces:
Sleeping
Sleeping
| ''' | |
| borrowed from https://github.com/vchoutas/expose/blob/master/expose/models/backbone/hrnet.py | |
| ''' | |
| import os.path as osp | |
| import torch | |
| import torch.nn as nn | |
| from torchvision.models.resnet import Bottleneck, BasicBlock | |
| BN_MOMENTUM = 0.1 | |
| def load_HRNet(pretrained=False): | |
| hr_net_cfg_dict = { | |
| 'use_old_impl': False, | |
| 'pretrained_layers': ['*'], | |
| 'stage1': { | |
| 'num_modules': 1, | |
| 'num_branches': 1, | |
| 'num_blocks': [4], | |
| 'num_channels': [64], | |
| 'block': 'BOTTLENECK', | |
| 'fuse_method': 'SUM' | |
| }, | |
| 'stage2': { | |
| 'num_modules': 1, | |
| 'num_branches': 2, | |
| 'num_blocks': [4, 4], | |
| 'num_channels': [48, 96], | |
| 'block': 'BASIC', | |
| 'fuse_method': 'SUM' | |
| }, | |
| 'stage3': { | |
| 'num_modules': 4, | |
| 'num_branches': 3, | |
| 'num_blocks': [4, 4, 4], | |
| 'num_channels': [48, 96, 192], | |
| 'block': 'BASIC', | |
| 'fuse_method': 'SUM' | |
| }, | |
| 'stage4': { | |
| 'num_modules': 3, | |
| 'num_branches': 4, | |
| 'num_blocks': [4, 4, 4, 4], | |
| 'num_channels': [48, 96, 192, 384], | |
| 'block': 'BASIC', | |
| 'fuse_method': 'SUM' | |
| } | |
| } | |
| hr_net_cfg = hr_net_cfg_dict | |
| model = HighResolutionNet(hr_net_cfg) | |
| return model | |
| class HighResolutionModule(nn.Module): | |
| def __init__(self, | |
| num_branches, | |
| blocks, | |
| num_blocks, | |
| num_inchannels, | |
| num_channels, | |
| fuse_method, | |
| multi_scale_output=True): | |
| super(HighResolutionModule, self).__init__() | |
| self._check_branches(num_branches, blocks, num_blocks, num_inchannels, | |
| num_channels) | |
| self.num_inchannels = num_inchannels | |
| self.fuse_method = fuse_method | |
| self.num_branches = num_branches | |
| self.multi_scale_output = multi_scale_output | |
| self.branches = self._make_branches(num_branches, blocks, num_blocks, | |
| num_channels) | |
| self.fuse_layers = self._make_fuse_layers() | |
| self.relu = nn.ReLU(True) | |
| def _check_branches(self, num_branches, blocks, num_blocks, num_inchannels, | |
| num_channels): | |
| if num_branches != len(num_blocks): | |
| error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( | |
| num_branches, len(num_blocks)) | |
| raise ValueError(error_msg) | |
| if num_branches != len(num_channels): | |
| error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( | |
| num_branches, len(num_channels)) | |
| raise ValueError(error_msg) | |
| if num_branches != len(num_inchannels): | |
| error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( | |
| num_branches, len(num_inchannels)) | |
| raise ValueError(error_msg) | |
| def _make_one_branch(self, | |
| branch_index, | |
| block, | |
| num_blocks, | |
| num_channels, | |
| stride=1): | |
| downsample = None | |
| if stride != 1 or \ | |
| self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d(self.num_inchannels[branch_index], | |
| num_channels[branch_index] * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False), | |
| nn.BatchNorm2d(num_channels[branch_index] * block.expansion, | |
| momentum=BN_MOMENTUM), | |
| ) | |
| layers = [] | |
| layers.append( | |
| block(self.num_inchannels[branch_index], | |
| num_channels[branch_index], stride, downsample)) | |
| self.num_inchannels[branch_index] = \ | |
| num_channels[branch_index] * block.expansion | |
| for i in range(1, num_blocks[branch_index]): | |
| layers.append( | |
| block(self.num_inchannels[branch_index], | |
| num_channels[branch_index])) | |
| return nn.Sequential(*layers) | |
| def _make_branches(self, num_branches, block, num_blocks, num_channels): | |
| branches = [] | |
| for i in range(num_branches): | |
| branches.append( | |
| self._make_one_branch(i, block, num_blocks, num_channels)) | |
| return nn.ModuleList(branches) | |
| def _make_fuse_layers(self): | |
| if self.num_branches == 1: | |
| return None | |
| num_branches = self.num_branches | |
| num_inchannels = self.num_inchannels | |
| fuse_layers = [] | |
| for i in range(num_branches if self.multi_scale_output else 1): | |
| fuse_layer = [] | |
| for j in range(num_branches): | |
| if j > i: | |
| fuse_layer.append( | |
| nn.Sequential( | |
| nn.Conv2d(num_inchannels[j], | |
| num_inchannels[i], | |
| 1, | |
| 1, | |
| 0, | |
| bias=False), | |
| nn.BatchNorm2d(num_inchannels[i]), | |
| nn.Upsample(scale_factor=2**(j - i), | |
| mode='nearest'))) | |
| elif j == i: | |
| fuse_layer.append(None) | |
| else: | |
| conv3x3s = [] | |
| for k in range(i - j): | |
| if k == i - j - 1: | |
| num_outchannels_conv3x3 = num_inchannels[i] | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d(num_inchannels[j], | |
| num_outchannels_conv3x3, | |
| 3, | |
| 2, | |
| 1, | |
| bias=False), | |
| nn.BatchNorm2d(num_outchannels_conv3x3))) | |
| else: | |
| num_outchannels_conv3x3 = num_inchannels[j] | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d(num_inchannels[j], | |
| num_outchannels_conv3x3, | |
| 3, | |
| 2, | |
| 1, | |
| bias=False), | |
| nn.BatchNorm2d(num_outchannels_conv3x3), | |
| nn.ReLU(True))) | |
| fuse_layer.append(nn.Sequential(*conv3x3s)) | |
| fuse_layers.append(nn.ModuleList(fuse_layer)) | |
| return nn.ModuleList(fuse_layers) | |
| def get_num_inchannels(self): | |
| return self.num_inchannels | |
| def forward(self, x): | |
| if self.num_branches == 1: | |
| return [self.branches[0](x[0])] | |
| for i in range(self.num_branches): | |
| x[i] = self.branches[i](x[i]) | |
| x_fuse = [] | |
| for i in range(len(self.fuse_layers)): | |
| y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) | |
| for j in range(1, self.num_branches): | |
| if i == j: | |
| y = y + x[j] | |
| else: | |
| y = y + self.fuse_layers[i][j](x[j]) | |
| x_fuse.append(self.relu(y)) | |
| return x_fuse | |
| blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck} | |
| class HighResolutionNet(nn.Module): | |
| def __init__(self, cfg, **kwargs): | |
| self.inplanes = 64 | |
| super(HighResolutionNet, self).__init__() | |
| use_old_impl = cfg.get('use_old_impl') | |
| self.use_old_impl = use_old_impl | |
| # stem net | |
| self.conv1 = nn.Conv2d(3, | |
| 64, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| bias=False) | |
| self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | |
| self.conv2 = nn.Conv2d(64, | |
| 64, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| bias=False) | |
| self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.stage1_cfg = cfg.get('stage1', {}) | |
| num_channels = self.stage1_cfg['num_channels'][0] | |
| block = blocks_dict[self.stage1_cfg['block']] | |
| num_blocks = self.stage1_cfg['num_blocks'][0] | |
| self.layer1 = self._make_layer(block, num_channels, num_blocks) | |
| stage1_out_channel = block.expansion * num_channels | |
| self.stage2_cfg = cfg.get('stage2', {}) | |
| num_channels = self.stage2_cfg.get('num_channels', (32, 64)) | |
| block = blocks_dict[self.stage2_cfg.get('block')] | |
| num_channels = [ | |
| num_channels[i] * block.expansion for i in range(len(num_channels)) | |
| ] | |
| stage2_num_channels = num_channels | |
| self.transition1 = self._make_transition_layer([stage1_out_channel], | |
| num_channels) | |
| self.stage2, pre_stage_channels = self._make_stage( | |
| self.stage2_cfg, num_channels) | |
| self.stage3_cfg = cfg.get('stage3') | |
| num_channels = self.stage3_cfg['num_channels'] | |
| block = blocks_dict[self.stage3_cfg['block']] | |
| num_channels = [ | |
| num_channels[i] * block.expansion for i in range(len(num_channels)) | |
| ] | |
| stage3_num_channels = num_channels | |
| self.transition2 = self._make_transition_layer(pre_stage_channels, | |
| num_channels) | |
| self.stage3, pre_stage_channels = self._make_stage( | |
| self.stage3_cfg, num_channels) | |
| self.stage4_cfg = cfg.get('stage4') | |
| num_channels = self.stage4_cfg['num_channels'] | |
| block = blocks_dict[self.stage4_cfg['block']] | |
| num_channels = [ | |
| num_channels[i] * block.expansion for i in range(len(num_channels)) | |
| ] | |
| self.transition3 = self._make_transition_layer(pre_stage_channels, | |
| num_channels) | |
| stage_4_out_channels = num_channels | |
| self.stage4, pre_stage_channels = self._make_stage( | |
| self.stage4_cfg, | |
| num_channels, | |
| multi_scale_output=not self.use_old_impl) | |
| stage4_num_channels = num_channels | |
| self.output_channels_dim = pre_stage_channels | |
| self.pretrained_layers = cfg['pretrained_layers'] | |
| self.init_weights() | |
| self.avg_pooling = nn.AdaptiveAvgPool2d(1) | |
| if use_old_impl: | |
| in_dims = (2**2 * stage2_num_channels[-1] + | |
| 2**1 * stage3_num_channels[-1] + | |
| stage_4_out_channels[-1]) | |
| else: | |
| # TODO: Replace with parameters | |
| in_dims = 4 * 384 | |
| self.subsample_4 = self._make_subsample_layer( | |
| in_channels=stage4_num_channels[0], num_layers=3) | |
| self.subsample_3 = self._make_subsample_layer( | |
| in_channels=stage2_num_channels[-1], num_layers=2) | |
| self.subsample_2 = self._make_subsample_layer( | |
| in_channels=stage3_num_channels[-1], num_layers=1) | |
| self.conv_layers = self._make_conv_layer(in_channels=in_dims, | |
| num_layers=5) | |
| def get_output_dim(self): | |
| base_output = { | |
| f'layer{idx + 1}': val | |
| for idx, val in enumerate(self.output_channels_dim) | |
| } | |
| output = base_output.copy() | |
| for key in base_output: | |
| output[f'{key}_avg_pooling'] = output[key] | |
| output['concat'] = 2048 | |
| return output | |
| def _make_transition_layer(self, num_channels_pre_layer, | |
| num_channels_cur_layer): | |
| num_branches_cur = len(num_channels_cur_layer) | |
| num_branches_pre = len(num_channels_pre_layer) | |
| transition_layers = [] | |
| for i in range(num_branches_cur): | |
| if i < num_branches_pre: | |
| if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | |
| transition_layers.append( | |
| nn.Sequential( | |
| nn.Conv2d(num_channels_pre_layer[i], | |
| num_channels_cur_layer[i], | |
| 3, | |
| 1, | |
| 1, | |
| bias=False), | |
| nn.BatchNorm2d(num_channels_cur_layer[i]), | |
| nn.ReLU(inplace=True))) | |
| else: | |
| transition_layers.append(None) | |
| else: | |
| conv3x3s = [] | |
| for j in range(i + 1 - num_branches_pre): | |
| inchannels = num_channels_pre_layer[-1] | |
| outchannels = num_channels_cur_layer[i] \ | |
| if j == i - num_branches_pre else inchannels | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d(inchannels, | |
| outchannels, | |
| 3, | |
| 2, | |
| 1, | |
| bias=False), nn.BatchNorm2d(outchannels), | |
| nn.ReLU(inplace=True))) | |
| transition_layers.append(nn.Sequential(*conv3x3s)) | |
| return nn.ModuleList(transition_layers) | |
| def _make_layer(self, block, planes, blocks, stride=1): | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d(self.inplanes, | |
| planes * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False), | |
| nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), | |
| ) | |
| layers = [] | |
| layers.append(block(self.inplanes, planes, stride, downsample)) | |
| self.inplanes = planes * block.expansion | |
| for i in range(1, blocks): | |
| layers.append(block(self.inplanes, planes)) | |
| return nn.Sequential(*layers) | |
| def _make_conv_layer(self, | |
| in_channels=2048, | |
| num_layers=3, | |
| num_filters=2048, | |
| stride=1): | |
| layers = [] | |
| for i in range(num_layers): | |
| downsample = nn.Conv2d(in_channels, | |
| num_filters, | |
| stride=1, | |
| kernel_size=1, | |
| bias=False) | |
| layers.append( | |
| Bottleneck(in_channels, | |
| num_filters // 4, | |
| downsample=downsample)) | |
| in_channels = num_filters | |
| return nn.Sequential(*layers) | |
| def _make_subsample_layer(self, in_channels=96, num_layers=3, stride=2): | |
| layers = [] | |
| for i in range(num_layers): | |
| layers.append( | |
| nn.Conv2d(in_channels=in_channels, | |
| out_channels=2 * in_channels, | |
| kernel_size=3, | |
| stride=stride, | |
| padding=1)) | |
| in_channels = 2 * in_channels | |
| layers.append(nn.BatchNorm2d(in_channels, momentum=BN_MOMENTUM)) | |
| layers.append(nn.ReLU(inplace=True)) | |
| return nn.Sequential(*layers) | |
| def _make_stage(self, | |
| layer_config, | |
| num_inchannels, | |
| multi_scale_output=True, | |
| log=False): | |
| num_modules = layer_config['num_modules'] | |
| num_branches = layer_config['num_branches'] | |
| num_blocks = layer_config['num_blocks'] | |
| num_channels = layer_config['num_channels'] | |
| block = blocks_dict[layer_config['block']] | |
| fuse_method = layer_config['fuse_method'] | |
| modules = [] | |
| for i in range(num_modules): | |
| # multi_scale_output is only used last module | |
| if not multi_scale_output and i == num_modules - 1: | |
| reset_multi_scale_output = False | |
| else: | |
| reset_multi_scale_output = True | |
| modules.append( | |
| HighResolutionModule(num_branches, block, num_blocks, | |
| num_inchannels, num_channels, fuse_method, | |
| reset_multi_scale_output)) | |
| modules[-1].log = log | |
| num_inchannels = modules[-1].get_num_inchannels() | |
| return nn.Sequential(*modules), num_inchannels | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.relu(x) | |
| x = self.conv2(x) | |
| x = self.bn2(x) | |
| x = self.relu(x) | |
| x = self.layer1(x) | |
| x_list = [] | |
| for i in range(self.stage2_cfg['num_branches']): | |
| if self.transition1[i] is not None: | |
| x_list.append(self.transition1[i](x)) | |
| else: | |
| x_list.append(x) | |
| y_list = self.stage2(x_list) | |
| x_list = [] | |
| for i in range(self.stage3_cfg['num_branches']): | |
| if self.transition2[i] is not None: | |
| if i < self.stage2_cfg['num_branches']: | |
| x_list.append(self.transition2[i](y_list[i])) | |
| else: | |
| x_list.append(self.transition2[i](y_list[-1])) | |
| else: | |
| x_list.append(y_list[i]) | |
| y_list = self.stage3(x_list) | |
| x_list = [] | |
| for i in range(self.stage4_cfg['num_branches']): | |
| if self.transition3[i] is not None: | |
| if i < self.stage3_cfg['num_branches']: | |
| x_list.append(self.transition3[i](y_list[i])) | |
| else: | |
| x_list.append(self.transition3[i](y_list[-1])) | |
| else: | |
| x_list.append(y_list[i]) | |
| if not self.use_old_impl: | |
| y_list = self.stage4(x_list) | |
| output = {} | |
| for idx, x in enumerate(y_list): | |
| output[f'layer{idx + 1}'] = x | |
| feat_list = [] | |
| if self.use_old_impl: | |
| x3 = self.subsample_3(x_list[1]) | |
| x2 = self.subsample_2(x_list[2]) | |
| x1 = x_list[3] | |
| feat_list = [x3, x2, x1] | |
| else: | |
| x4 = self.subsample_4(y_list[0]) | |
| x3 = self.subsample_3(y_list[1]) | |
| x2 = self.subsample_2(y_list[2]) | |
| x1 = y_list[3] | |
| feat_list = [x4, x3, x2, x1] | |
| xf = self.conv_layers(torch.cat(feat_list, dim=1)) | |
| xf = xf.mean(dim=(2, 3)) | |
| xf = xf.view(xf.size(0), -1) | |
| output['concat'] = xf | |
| # y_list = self.stage4(x_list) | |
| # output['stage4'] = y_list[0] | |
| # output['stage4_avg_pooling'] = self.avg_pooling(y_list[0]).view( | |
| # *y_list[0].shape[:2]) | |
| # concat_outputs = y_list + x_list | |
| # output['concat'] = torch.cat([ | |
| # self.avg_pooling(tensor).view(*tensor.shape[:2]) | |
| # for tensor in concat_outputs], | |
| # dim=1) | |
| return output | |
| def init_weights(self): | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
| nn.init.normal_(m.weight, std=0.001) | |
| for name, _ in m.named_parameters(): | |
| if name in ['bias']: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.BatchNorm2d): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.ConvTranspose2d): | |
| nn.init.normal_(m.weight, std=0.001) | |
| for name, _ in m.named_parameters(): | |
| if name in ['bias']: | |
| nn.init.constant_(m.bias, 0) | |
| def load_weights(self, pretrained=''): | |
| pretrained = osp.expandvars(pretrained) | |
| if osp.isfile(pretrained): | |
| pretrained_state_dict = torch.load( | |
| pretrained, map_location=torch.device("cpu")) | |
| need_init_state_dict = {} | |
| for name, m in pretrained_state_dict.items(): | |
| if (name.split('.')[0] in self.pretrained_layers | |
| or self.pretrained_layers[0] == '*'): | |
| need_init_state_dict[name] = m | |
| missing, unexpected = self.load_state_dict(need_init_state_dict, | |
| strict=False) | |
| elif pretrained: | |
| raise ValueError('{} is not exist!'.format(pretrained)) | |