Spaces:
Sleeping
Sleeping
import whisper | |
import gradio as gr | |
import torch | |
from transformers import BertTokenizer, BertForSequenceClassification, pipeline | |
from app.questions import get_question | |
# Load models | |
whisper_model = whisper.load_model("small") | |
confidence_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/final_confidence') | |
confidence_tokenizer = BertTokenizer.from_pretrained('RiteshAkhade/final_confidence') | |
context_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/context_model') | |
context_tokenizer = BertTokenizer.from_pretrained('RiteshAkhade/context_model') | |
emotion_pipe = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=1) | |
# Emotion map with labels and emojis | |
interview_emotion_map = { | |
"joy": ("Confident", "๐"), | |
"fear": ("Nervous", "๐จ"), | |
"sadness": ("Uncertain", "๐"), | |
"anger": ("Frustrated", "๐ "), | |
"surprise": ("Curious", "๐ฎ"), | |
"neutral": ("Calm", "๐"), | |
"disgust": ("Disengaged", "๐"), | |
} | |
# Static question sets | |
technical_questions = [get_question(i) for i in range(6)] | |
non_technical_questions = [ | |
"Tell me about yourself.", | |
"What are your strengths and weaknesses?", | |
"Where do you see yourself in 5 years?", | |
"How do you handle stress or pressure?", | |
"Describe a time you faced a conflict and how you resolved it.", | |
"What motivates you to do your best?" | |
] | |
# Index trackers | |
current_tech_index = 0 | |
current_non_tech_index = 0 | |
# Relevance prediction | |
def predict_relevance(question, answer): | |
if not answer.strip(): | |
return "Irrelevant" | |
inputs = context_tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True) | |
context_model.eval() | |
with torch.no_grad(): | |
outputs = context_model(**inputs) | |
probabilities = torch.softmax(outputs.logits, dim=-1) | |
return "Relevant" if probabilities[0, 1] > 0.5 else "Irrelevant" | |
# Confidence prediction | |
def predict_confidence(question, answer, threshold=0.4): | |
if not isinstance(answer, str) or not answer.strip(): | |
return "Not Confident" | |
inputs = confidence_tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True) | |
confidence_model.eval() | |
with torch.no_grad(): | |
outputs = confidence_model(**inputs) | |
probabilities = torch.softmax(outputs.logits, dim=-1) | |
return "Confident" if probabilities[0, 1].item() > threshold else "Not Confident" | |
# Emotion detection | |
def detect_emotion(answer): | |
if not answer.strip(): | |
return "No Answer", "" | |
result = emotion_pipe(answer) | |
label = result[0][0]["label"].lower() | |
emotion_text, emoji = interview_emotion_map.get(label, ("Unknown", "โ")) | |
return emotion_text, emoji | |
# Question navigation (non-tech) | |
def show_non_tech_question(): | |
global current_non_tech_index | |
return non_technical_questions[current_non_tech_index] | |
def next_non_tech_question(): | |
global current_non_tech_index | |
current_non_tech_index = (current_non_tech_index + 1) % len(non_technical_questions) | |
return non_technical_questions[current_non_tech_index], None, "", "" | |
# Question navigation (tech) | |
def show_tech_question(): | |
global current_tech_index | |
return technical_questions[current_tech_index] | |
def next_tech_question(): | |
global current_tech_index | |
current_tech_index = (current_tech_index + 1) % len(technical_questions) | |
return technical_questions[current_tech_index], None, "", "", "" | |
# Transcribe + analyze (non-technical) | |
def transcribe_and_analyze_non_tech(audio, question): | |
try: | |
audio = whisper.load_audio(audio) | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device) | |
result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False)) | |
transcribed_text = result.text | |
emotion_text, emoji = detect_emotion(transcribed_text) | |
return transcribed_text, f"{emotion_text} {emoji}" | |
except Exception as e: | |
return f"Error: {str(e)}", "โ" | |
# Transcribe + analyze (technical) | |
def transcribe_and_analyze_tech(audio, question): | |
try: | |
audio = whisper.load_audio(audio) | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device) | |
result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False)) | |
transcribed_text = result.text | |
context_result = predict_relevance(question, transcribed_text) | |
confidence_result = predict_confidence(question, transcribed_text) | |
return transcribed_text, context_result, confidence_result | |
except Exception as e: | |
return f"Error: {str(e)}", "", "" | |
# UI layout | |
with gr.Blocks(css="textarea, .gr-box { font-size: 18px !important; }") as demo: | |
gr.HTML("<h1 style='text-align: center; font-size: 32px;'>INTERVIEW PREPARATION MODEL</h1>") | |
with gr.Tabs(): | |
# NON-TECHNICAL TAB | |
with gr.Tab("Non-Technical"): | |
gr.Markdown("### Emotional Context Analysis (๐ง + ๐)") | |
question_display_1 = gr.Textbox(label="Interview Question", value=show_non_tech_question(), interactive=False) | |
audio_input_1 = gr.Audio(type="filepath", label="Record Your Answer") | |
transcribed_text_1 = gr.Textbox(label="Transcribed Answer", interactive=False, lines=4) | |
emotion_output = gr.Textbox(label="Detected Emotion", interactive=False) | |
audio_input_1.change(fn=transcribe_and_analyze_non_tech, | |
inputs=[audio_input_1, question_display_1], | |
outputs=[transcribed_text_1, emotion_output]) | |
next_button_1 = gr.Button("Next Question") | |
next_button_1.click(fn=next_non_tech_question, | |
outputs=[question_display_1, audio_input_1, transcribed_text_1, emotion_output]) | |
# TECHNICAL TAB | |
with gr.Tab("Technical"): | |
gr.Markdown("### Technical Question Analysis (๐ + ๐ค)") | |
question_display_2 = gr.Textbox(label="Interview Question", value=show_tech_question(), interactive=False) | |
audio_input_2 = gr.Audio(type="filepath", label="Record Your Answer") | |
transcribed_text_2 = gr.Textbox(label="Transcribed Answer", interactive=False, lines=4) | |
context_analysis_result = gr.Textbox(label="Context Analysis", interactive=False) | |
confidence_analysis_result = gr.Textbox(label="Confidence Analysis", interactive=False) | |
audio_input_2.change(fn=transcribe_and_analyze_tech, | |
inputs=[audio_input_2, question_display_2], | |
outputs=[transcribed_text_2, context_analysis_result, confidence_analysis_result]) | |
next_button_2 = gr.Button("Next Question") | |
next_button_2.click(fn=next_tech_question, | |
outputs=[question_display_2, audio_input_2, transcribed_text_2, | |
context_analysis_result, confidence_analysis_result]) | |
demo.launch(share=True, show_api = False) | |