RiteshAkhade's picture
Update app.py
466d120 verified
raw
history blame
6.55 kB
import whisper
import gradio as gr
import torch
from transformers import BertTokenizer, BertForSequenceClassification, pipeline
from app.questions import get_question
# Load models
whisper_model = whisper.load_model("small")
confidence_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/final_confidence')
confidence_tokenizer = BertTokenizer.from_pretrained('RiteshAkhade/final_confidence')
context_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/context_model')
context_tokenizer = BertTokenizer.from_pretrained('RiteshAkhade/context_model')
emotion_pipe = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=1)
# Emotion map with labels and emojis
interview_emotion_map = {
"joy": ("Confident", "๐Ÿ™‚"),
"fear": ("Nervous", "๐Ÿ˜จ"),
"sadness": ("Uncertain", "๐Ÿ™"),
"anger": ("Frustrated", "๐Ÿ˜ "),
"surprise": ("Curious", "๐Ÿ˜ฎ"),
"neutral": ("Calm", "๐Ÿ˜"),
"disgust": ("Disengaged", "๐Ÿ˜’"),
}
# Static question sets
technical_questions = [get_question(i) for i in range(6)]
non_technical_questions = [
"Tell me about yourself.",
"What are your strengths and weaknesses?",
"Where do you see yourself in 5 years?",
"How do you handle stress or pressure?",
"Describe a time you faced a conflict and how you resolved it.",
"What motivates you to do your best?"
]
# Index trackers
current_tech_index = 0
current_non_tech_index = 0
# Relevance prediction
def predict_relevance(question, answer):
if not answer.strip():
return "Irrelevant"
inputs = context_tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True)
context_model.eval()
with torch.no_grad():
outputs = context_model(**inputs)
probs = torch.softmax(outputs.logits, dim=-1)
return "Relevant" if probs[0, 1] > 0.5 else "Irrelevant"
# Confidence prediction
def predict_confidence(question, answer, threshold=0.4):
if not answer.strip():
return "Not Confident"
inputs = confidence_tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True)
confidence_model.eval()
with torch.no_grad():
outputs = confidence_model(**inputs)
probs = torch.softmax(outputs.logits, dim=-1)
return "Confident" if probs[0, 1].item() > threshold else "Not Confident"
# Emotion detection
def detect_emotion(answer):
if not answer.strip():
return "No Answer", ""
result = emotion_pipe(answer)
label = result[0][0]["label"].lower()
return interview_emotion_map.get(label, ("Unknown", "โ“"))
# Question navigation (non-tech)
def show_non_tech_question():
global current_non_tech_index
return non_technical_questions[current_non_tech_index]
def next_non_tech_question():
global current_non_tech_index
current_non_tech_index = (current_non_tech_index + 1) % len(non_technical_questions)
# return: question, cleared transcribed_text, cleared emotion
return non_technical_questions[current_non_tech_index], "", ""
# Question navigation (tech)
def show_tech_question():
global current_tech_index
return technical_questions[current_tech_index]
def next_tech_question():
global current_tech_index
current_tech_index = (current_tech_index + 1) % len(technical_questions)
# return: question, cleared transcribed_text, cleared context, cleared confidence
return technical_questions[current_tech_index], "", "", ""
# Transcribe + analyze (non-technical)
def transcribe_and_analyze_non_tech(audio, question):
try:
audio_data = whisper.load_audio(audio)
audio_data = whisper.pad_or_trim(audio_data)
mel = whisper.log_mel_spectrogram(audio_data).to(whisper_model.device)
result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False))
text = result.text
emotion_text, emoji = detect_emotion(text)
return text, f"{emotion_text} {emoji}"
except Exception as e:
return f"Error: {e}", "โ“"
# Transcribe + analyze (technical)
def transcribe_and_analyze_tech(audio, question):
try:
audio_data = whisper.load_audio(audio)
audio_data = whisper.pad_or_trim(audio_data)
mel = whisper.log_mel_spectrogram(audio_data).to(whisper_model.device)
result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False))
text = result.text
return text, predict_relevance(question, text), predict_confidence(question, text)
except Exception as e:
return f"Error: {e}", "", ""
# UI layout
with gr.Blocks(css="textarea, .gr-box { font-size: 18px !important; }") as demo:
gr.HTML("<h1 style='text-align: center; font-size: 32px;'>INTERVIEW PREPARATION MODEL</h1>")
with gr.Tabs():
# NON-TECHNICAL TAB
with gr.Tab("Non-Technical"):
gr.Markdown("### Emotional Context Analysis (๐Ÿง  + ๐Ÿ˜Š)")
q1 = gr.Textbox(label="Interview Question", value=show_non_tech_question(), interactive=False)
a1 = gr.Audio(type="filepath", label="Record Your Answer")
t1 = gr.Textbox(label="Transcribed Answer", interactive=False, lines=4)
e1 = gr.Textbox(label="Detected Emotion", interactive=False)
a1.change(
fn=transcribe_and_analyze_non_tech,
inputs=[a1, q1],
outputs=[t1, e1]
)
btn1 = gr.Button("Next Question")
btn1.click(
fn=next_non_tech_question,
inputs=[],
outputs=[q1, t1, e1]
)
# TECHNICAL TAB
with gr.Tab("Technical"):
gr.Markdown("### Technical Question Analysis (๐ŸŽ“ + ๐Ÿค–)")
q2 = gr.Textbox(label="Interview Question", value=show_tech_question(), interactive=False)
a2 = gr.Audio(type="filepath", label="Record Your Answer")
t2 = gr.Textbox(label="Transcribed Answer", interactive=False, lines=4)
c2 = gr.Textbox(label="Context Analysis", interactive=False)
f2 = gr.Textbox(label="Confidence Analysis", interactive=False)
a2.change(
fn=transcribe_and_analyze_tech,
inputs=[a2, q2],
outputs=[t2, c2, f2]
)
btn2 = gr.Button("Next Question")
btn2.click(
fn=next_tech_question,
inputs=[],
outputs=[q2, t2, c2, f2]
)
demo.launch(share=True)