Update app.py
Browse files
app.py
CHANGED
@@ -1,180 +1,159 @@
|
|
1 |
-
import os
|
2 |
-
os.system("pip install --upgrade openai-whisper torch")
|
3 |
-
os.system("pip install --upgrade transformers")
|
4 |
import whisper
|
5 |
import gradio as gr
|
6 |
import torch
|
7 |
-
from transformers import BertTokenizer, BertForSequenceClassification
|
8 |
from app.questions import get_question
|
9 |
|
10 |
-
# Load
|
11 |
whisper_model = whisper.load_model("small")
|
12 |
-
|
13 |
-
|
14 |
-
confidence_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/Confidence')
|
15 |
-
confidence_tokenizer = BertTokenizer.from_pretrained('RiteshAkhade/Confidence')
|
16 |
-
|
17 |
-
# Load pre-trained context analysis model (BERT-based)
|
18 |
context_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/context_model')
|
19 |
context_tokenizer = BertTokenizer.from_pretrained('RiteshAkhade/context_model')
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def predict_relevance(question, answer):
|
23 |
-
if not answer.strip():
|
24 |
return "Irrelevant"
|
25 |
-
|
26 |
inputs = context_tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True)
|
27 |
context_model.eval()
|
28 |
-
|
29 |
with torch.no_grad():
|
30 |
outputs = context_model(**inputs)
|
31 |
-
|
32 |
-
probabilities
|
33 |
-
threshold = 0.5
|
34 |
-
relevant_prob = probabilities[0, 1] # Probability for relevant class
|
35 |
-
|
36 |
-
if relevant_prob > threshold:
|
37 |
-
return "Relevant"
|
38 |
-
else:
|
39 |
-
return "Irrelevant"
|
40 |
|
41 |
-
#
|
42 |
def predict_confidence(question, answer, threshold=0.4):
|
43 |
-
if not isinstance(answer, str) or not answer.strip():
|
44 |
return "Not Confident"
|
45 |
-
|
46 |
-
# Tokenize input
|
47 |
inputs = confidence_tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True)
|
48 |
-
|
49 |
-
# Set model to evaluation mode
|
50 |
confidence_model.eval()
|
51 |
-
|
52 |
with torch.no_grad():
|
53 |
outputs = confidence_model(**inputs)
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
return "
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
return
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
return
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
83 |
try:
|
84 |
-
# Load and process audio using Whisper
|
85 |
audio = whisper.load_audio(audio)
|
86 |
audio = whisper.pad_or_trim(audio)
|
87 |
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
|
88 |
-
|
89 |
-
result = whisper.decode(whisper_model, mel, options)
|
90 |
-
|
91 |
-
# Get the transcribed text
|
92 |
transcribed_text = result.text
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
context_result = predict_relevance(question, transcribed_text)
|
96 |
confidence_result = predict_confidence(question, transcribed_text)
|
97 |
-
|
98 |
-
# Return the results
|
99 |
return transcribed_text, context_result, confidence_result
|
100 |
except Exception as e:
|
101 |
return f"Error: {str(e)}", "", ""
|
102 |
|
103 |
-
#
|
104 |
-
with gr.Blocks() as demo:
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
body {
|
109 |
-
background-color: #f0f0f0;
|
110 |
-
}
|
111 |
-
#title {
|
112 |
-
color: grey;
|
113 |
-
font-size: 30px;
|
114 |
-
text-align: center;
|
115 |
-
margin-bottom: 20px;
|
116 |
-
}
|
117 |
-
.transcribe-btn, .next-btn {
|
118 |
-
background-color: #4CAF50;
|
119 |
-
color: white;
|
120 |
-
font-size: 16px;
|
121 |
-
padding: 10px 20px;
|
122 |
-
border-radius: 5px;
|
123 |
-
cursor: pointer;
|
124 |
-
margin-top: 10px;
|
125 |
-
}
|
126 |
-
.transcribe-btn:hover, .next-btn:hover {
|
127 |
-
background-color: #45a049;
|
128 |
-
}
|
129 |
-
#question-box {
|
130 |
-
font-size: 20px;
|
131 |
-
color: #555;
|
132 |
-
text-align: center;
|
133 |
-
}
|
134 |
-
#text-box {
|
135 |
-
font-size: 18px;
|
136 |
-
color: #333;
|
137 |
-
}
|
138 |
-
#context-box, #confidence-box {
|
139 |
-
font-size: 18px;
|
140 |
-
color: #333;
|
141 |
-
}
|
142 |
-
</style>
|
143 |
-
''')
|
144 |
-
|
145 |
-
# Title
|
146 |
-
gr.Markdown("<h1 id='title'>INTERVIEW PREPARATION MODEL</h1>")
|
147 |
-
|
148 |
-
# Question display
|
149 |
-
with gr.Row():
|
150 |
-
question_display = gr.Textbox(label="Interview Question", value=show_question(), interactive=False, elem_id="question-box")
|
151 |
-
|
152 |
-
# Audio input and transcription section
|
153 |
-
with gr.Row():
|
154 |
-
audio_input = gr.Audio(type="filepath", label="Record Your Answer")
|
155 |
-
|
156 |
-
# Separate text boxes for the transcribed text, context, and confidence analysis
|
157 |
-
with gr.Row():
|
158 |
-
transcribed_text = gr.Textbox(label="Your Answer (Transcription)", interactive=False, lines=5, elem_id="text-box")
|
159 |
-
|
160 |
-
with gr.Row():
|
161 |
-
context_analysis_result = gr.Textbox(label="Context Analysis", interactive=False, elem_id="context-box")
|
162 |
-
|
163 |
-
with gr.Row():
|
164 |
-
confidence_analysis_result = gr.Textbox(label="Confidence Analysis", interactive=False, elem_id="confidence-box")
|
165 |
-
|
166 |
-
# Automatically transcribe the audio and analyze context and confidence when audio is provided
|
167 |
-
audio_input.change(fn=transcribe_and_analyze,
|
168 |
-
inputs=[audio_input, question_display],
|
169 |
-
outputs=[transcribed_text, context_analysis_result, confidence_analysis_result])
|
170 |
-
|
171 |
-
# Button to get the next question
|
172 |
-
with gr.Row():
|
173 |
-
next_button = gr.Button("Next Question", elem_classes="next-btn")
|
174 |
|
175 |
-
#
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
# Launch app
|
180 |
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
1 |
import whisper
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
+
from transformers import BertTokenizer, BertForSequenceClassification, pipeline
|
5 |
from app.questions import get_question
|
6 |
|
7 |
+
# Load models
|
8 |
whisper_model = whisper.load_model("small")
|
9 |
+
confidence_model = BertForSequenceClassification.from_pretrained('/home/ghost/LLM/confidence_model1')
|
10 |
+
confidence_tokenizer = BertTokenizer.from_pretrained('/home/ghost/LLM/confidence_tokenizer1')
|
|
|
|
|
|
|
|
|
11 |
context_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/context_model')
|
12 |
context_tokenizer = BertTokenizer.from_pretrained('RiteshAkhade/context_model')
|
13 |
+
emotion_pipe = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=1)
|
14 |
+
|
15 |
+
# Emotion map with labels and emojis
|
16 |
+
interview_emotion_map = {
|
17 |
+
"joy": ("Confident", "🙂"),
|
18 |
+
"fear": ("Nervous", "😨"),
|
19 |
+
"sadness": ("Uncertain", "🙁"),
|
20 |
+
"anger": ("Frustrated", "😠"),
|
21 |
+
"surprise": ("Curious", "😮"),
|
22 |
+
"neutral": ("Calm", "😐"),
|
23 |
+
"disgust": ("Disengaged", "😒"),
|
24 |
+
}
|
25 |
+
|
26 |
+
# Static question sets
|
27 |
+
technical_questions = [get_question(i) for i in range(6)]
|
28 |
+
non_technical_questions = [
|
29 |
+
"Tell me about yourself.",
|
30 |
+
"What are your strengths and weaknesses?",
|
31 |
+
"Where do you see yourself in 5 years?",
|
32 |
+
"How do you handle stress or pressure?",
|
33 |
+
"Describe a time you faced a conflict and how you resolved it.",
|
34 |
+
"What motivates you to do your best?"
|
35 |
+
]
|
36 |
+
|
37 |
+
# Index trackers
|
38 |
+
current_tech_index = 0
|
39 |
+
current_non_tech_index = 0
|
40 |
+
|
41 |
+
# Relevance prediction
|
42 |
def predict_relevance(question, answer):
|
43 |
+
if not answer.strip():
|
44 |
return "Irrelevant"
|
|
|
45 |
inputs = context_tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True)
|
46 |
context_model.eval()
|
|
|
47 |
with torch.no_grad():
|
48 |
outputs = context_model(**inputs)
|
49 |
+
probabilities = torch.softmax(outputs.logits, dim=-1)
|
50 |
+
return "Relevant" if probabilities[0, 1] > 0.5 else "Irrelevant"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# Confidence prediction
|
53 |
def predict_confidence(question, answer, threshold=0.4):
|
54 |
+
if not isinstance(answer, str) or not answer.strip():
|
55 |
return "Not Confident"
|
|
|
|
|
56 |
inputs = confidence_tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True)
|
|
|
|
|
57 |
confidence_model.eval()
|
|
|
58 |
with torch.no_grad():
|
59 |
outputs = confidence_model(**inputs)
|
60 |
+
probabilities = torch.softmax(outputs.logits, dim=-1)
|
61 |
+
return "Confident" if probabilities[0, 1].item() > threshold else "Not Confident"
|
62 |
+
|
63 |
+
# Emotion detection
|
64 |
+
def detect_emotion(answer):
|
65 |
+
if not answer.strip():
|
66 |
+
return "No Answer", ""
|
67 |
+
result = emotion_pipe(answer)
|
68 |
+
label = result[0][0]["label"].lower()
|
69 |
+
emotion_text, emoji = interview_emotion_map.get(label, ("Unknown", "❓"))
|
70 |
+
return emotion_text, emoji
|
71 |
+
|
72 |
+
# Question navigation (non-tech)
|
73 |
+
def show_non_tech_question():
|
74 |
+
global current_non_tech_index
|
75 |
+
return non_technical_questions[current_non_tech_index]
|
76 |
+
|
77 |
+
def next_non_tech_question():
|
78 |
+
global current_non_tech_index
|
79 |
+
current_non_tech_index = (current_non_tech_index + 1) % len(non_technical_questions)
|
80 |
+
return non_technical_questions[current_non_tech_index], None, "", ""
|
81 |
+
|
82 |
+
# Question navigation (tech)
|
83 |
+
def show_tech_question():
|
84 |
+
global current_tech_index
|
85 |
+
return technical_questions[current_tech_index]
|
86 |
+
|
87 |
+
def next_tech_question():
|
88 |
+
global current_tech_index
|
89 |
+
current_tech_index = (current_tech_index + 1) % len(technical_questions)
|
90 |
+
return technical_questions[current_tech_index], None, "", "", ""
|
91 |
+
|
92 |
+
# Transcribe + analyze (non-technical)
|
93 |
+
def transcribe_and_analyze_non_tech(audio, question):
|
94 |
try:
|
|
|
95 |
audio = whisper.load_audio(audio)
|
96 |
audio = whisper.pad_or_trim(audio)
|
97 |
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
|
98 |
+
result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False))
|
|
|
|
|
|
|
99 |
transcribed_text = result.text
|
100 |
+
emotion_text, emoji = detect_emotion(transcribed_text)
|
101 |
+
return transcribed_text, f"{emotion_text} {emoji}"
|
102 |
+
except Exception as e:
|
103 |
+
return f"Error: {str(e)}", "❓"
|
104 |
|
105 |
+
# Transcribe + analyze (technical)
|
106 |
+
def transcribe_and_analyze_tech(audio, question):
|
107 |
+
try:
|
108 |
+
audio = whisper.load_audio(audio)
|
109 |
+
audio = whisper.pad_or_trim(audio)
|
110 |
+
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
|
111 |
+
result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False))
|
112 |
+
transcribed_text = result.text
|
113 |
context_result = predict_relevance(question, transcribed_text)
|
114 |
confidence_result = predict_confidence(question, transcribed_text)
|
|
|
|
|
115 |
return transcribed_text, context_result, confidence_result
|
116 |
except Exception as e:
|
117 |
return f"Error: {str(e)}", "", ""
|
118 |
|
119 |
+
# UI layout
|
120 |
+
with gr.Blocks(css="textarea, .gr-box { font-size: 18px !important; }") as demo:
|
121 |
+
gr.HTML("<h1 style='text-align: center; font-size: 32px;'>INTERVIEW PREPARATION MODEL</h1>")
|
122 |
+
|
123 |
+
with gr.Tabs():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
# NON-TECHNICAL TAB
|
126 |
+
with gr.Tab("Non-Technical"):
|
127 |
+
gr.Markdown("### Emotional Context Analysis (🧠 + 😊)")
|
128 |
+
question_display_1 = gr.Textbox(label="Interview Question", value=show_non_tech_question(), interactive=False)
|
129 |
+
audio_input_1 = gr.Audio(type="filepath", label="Record Your Answer")
|
130 |
+
transcribed_text_1 = gr.Textbox(label="Transcribed Answer", interactive=False, lines=4)
|
131 |
+
emotion_output = gr.Textbox(label="Detected Emotion", interactive=False)
|
132 |
+
|
133 |
+
audio_input_1.change(fn=transcribe_and_analyze_non_tech,
|
134 |
+
inputs=[audio_input_1, question_display_1],
|
135 |
+
outputs=[transcribed_text_1, emotion_output])
|
136 |
+
|
137 |
+
next_button_1 = gr.Button("Next Question")
|
138 |
+
next_button_1.click(fn=next_non_tech_question,
|
139 |
+
outputs=[question_display_1, audio_input_1, transcribed_text_1, emotion_output])
|
140 |
+
|
141 |
+
# TECHNICAL TAB
|
142 |
+
with gr.Tab("Technical"):
|
143 |
+
gr.Markdown("### Technical Question Analysis (🎓 + 🤖)")
|
144 |
+
question_display_2 = gr.Textbox(label="Interview Question", value=show_tech_question(), interactive=False)
|
145 |
+
audio_input_2 = gr.Audio(type="filepath", label="Record Your Answer")
|
146 |
+
transcribed_text_2 = gr.Textbox(label="Transcribed Answer", interactive=False, lines=4)
|
147 |
+
context_analysis_result = gr.Textbox(label="Context Analysis", interactive=False)
|
148 |
+
confidence_analysis_result = gr.Textbox(label="Confidence Analysis", interactive=False)
|
149 |
+
|
150 |
+
audio_input_2.change(fn=transcribe_and_analyze_tech,
|
151 |
+
inputs=[audio_input_2, question_display_2],
|
152 |
+
outputs=[transcribed_text_2, context_analysis_result, confidence_analysis_result])
|
153 |
+
|
154 |
+
next_button_2 = gr.Button("Next Question")
|
155 |
+
next_button_2.click(fn=next_tech_question,
|
156 |
+
outputs=[question_display_2, audio_input_2, transcribed_text_2,
|
157 |
+
context_analysis_result, confidence_analysis_result])
|
158 |
|
|
|
159 |
demo.launch(share=True)
|