File size: 7,393 Bytes
2159374
60e8923
2159374
60e8923
2159374
60e8923
2159374
 
60e8923
2159374
 
60e8923
2159374
 
 
 
60e8923
 
2159374
 
60e8923
 
 
2159374
60e8923
 
 
2159374
 
 
 
 
 
60e8923
2159374
 
 
ecb7a48
60e8923
 
 
 
 
2159374
60e8923
 
2159374
60e8923
ecb7a48
60e8923
 
 
ecb7a48
60e8923
 
 
 
 
 
 
 
 
 
2159374
 
 
 
 
 
 
 
 
 
60e8923
 
 
 
2159374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60e8923
2159374
60e8923
2159374
60e8923
2159374
 
 
60e8923
 
 
2159374
 
 
 
ecb7a48
2159374
 
 
 
 
60e8923
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import math
import os
import re
from pathlib import Path
from statistics import median

import streamlit as st
from bs4 import BeautifulSoup
from langchain.chains import ConversationalRetrievalChain
from langchain.docstore.document import Document
from langchain.document_loaders import PDFMinerPDFasHTMLLoader, WebBaseLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain_openai import ChatOpenAI, OpenAI
from langchain.vectorstores import Chroma
from langchain.retrievers.multi_query import MultiQueryRetriever
from ragatouille import RAGPretrainedModel


st.set_page_config(layout="wide")
os.environ["OPENAI_API_KEY"] = "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"

LOCAL_VECTOR_STORE_DIR = Path(__file__).resolve().parent.joinpath("vector_store")

deep_strip = lambda text: re.sub(r"\s+", " ", text or "").strip()


def embeddings_on_local_vectordb(texts):
    colbert = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv1.9")
    colbert.index(
        collection=[chunk.page_content for chunk in texts],
        split_documents=False,
        document_metadatas=[chunk.metadata for chunk in texts],
        index_name="vector_store",
    )
    retriever = colbert.as_langchain_retriever(k=5)
    retriever = MultiQueryRetriever.from_llm(
        retriever=retriever, llm=ChatOpenAI(temperature=0)
    )
    return retriever


def query_llm(retriever, query):
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm=ChatOpenAI(model="gpt-4-0125-preview", temperature=0),
        retriever=retriever,
        return_source_documents=True,
        chain_type="stuff",
    )
    relevant_docs = retriever.get_relevant_documents(query)
    result = qa_chain({"question": query, "chat_history": st.session_state.messages})
    result = result["answer"]
    st.session_state.messages.append((query, result))
    return relevant_docs, result


def input_fields():
    st.session_state.source_doc_urls = [
        url.strip() for url in st.sidebar.text_input("Source Document URLs").split(",")
    ]


def process_documents():
    try:
        snippets = []
        for url in st.session_state.source_doc_urls:
            if url.endswith(".pdf"):
                snippets.extend(process_pdf(url))
            else:
                snippets.extend(process_web(url))
        st.session_state.retriever = embeddings_on_local_vectordb(snippets)
        st.session_state.headers = [
            " ".join(snip.metadata["header"].split()[:10]) for snip in snippets
        ]
    except Exception as e:
        st.error(f"An error occurred: {e}")


def process_pdf(url):
    data = PDFMinerPDFasHTMLLoader(url).load()[0]
    content = BeautifulSoup(data.page_content, "html.parser").find_all("div")
    snippets = get_pdf_snippets(content)
    filtered_snippets = filter_pdf_snippets(snippets, new_line_threshold_ratio=0.4)
    median_font_size = math.ceil(
        median([font_size for _, font_size in filtered_snippets])
    )
    semantic_snippets = get_pdf_semantic_snippets(filtered_snippets, median_font_size)
    document_snippets = [
        Document(
            page_content=deep_strip(snip[1]["header_text"]) + " " + deep_strip(snip[0]),
            metadata={
                "header": deep_strip(snip[1]["header_text"]),
                "source_url": url,
                "source_type": "pdf",
            },
        )
        for snip in semantic_snippets
    ]
    return document_snippets


def get_pdf_snippets(content):
    current_font_size = None
    current_text = ""
    snippets = []
    for cntnt in content:
        span = cntnt.find("span")
        if not span:
            continue
        style = span.get("style")
        if not style:
            continue
        font_size = re.findall("font-size:(\d+)px", style)
        if not font_size:
            continue
        font_size = int(font_size[0])

        if not current_font_size:
            current_font_size = font_size
        if font_size == current_font_size:
            current_text += cntnt.text
        else:
            snippets.append((current_text, current_font_size))
            current_font_size = font_size
            current_text = cntnt.text
    snippets.append((current_text, current_font_size))
    return snippets


def filter_pdf_snippets(content_list, new_line_threshold_ratio):
    filtered_list = []
    for e, (content, font_size) in enumerate(content_list):
        newline_count = content.count("\n")
        total_chars = len(content)
        ratio = newline_count / total_chars
        if ratio <= new_line_threshold_ratio:
            filtered_list.append((content, font_size))
    return filtered_list


def get_pdf_semantic_snippets(filtered_snippets, median_font_size):
    semantic_snippets = []
    current_header = None
    current_content = []
    header_font_size = None
    content_font_sizes = []

    for content, font_size in filtered_snippets:
        if font_size > median_font_size:
            if current_header is not None:
                metadata = {
                    "header_font_size": header_font_size,
                    "content_font_size": (
                        median(content_font_sizes) if content_font_sizes else None
                    ),
                    "header_text": current_header,
                }
                semantic_snippets.append((current_content, metadata))
                current_content = []
                content_font_sizes = []

            current_header = content
            header_font_size = font_size
        else:
            content_font_sizes.append(font_size)
            if current_content:
                current_content += " " + content
            else:
                current_content = content

    if current_header is not None:
        metadata = {
            "header_font_size": header_font_size,
            "content_font_size": (
                median(content_font_sizes) if content_font_sizes else None
            ),
            "header_text": current_header,
        }
        semantic_snippets.append((current_content, metadata))
    return semantic_snippets


def process_web(url):
    data = WebBaseLoader(url).load()[0]
    document_snippets = [
        Document(
            page_content=deep_strip(data.page_content),
            metadata={
                "header": data.metadata["title"],
                "source_url": url,
                "source_type": "web",
            },
        )
    ]
    return document_snippets


def boot():
    st.title("Xi Chatbot")
    input_fields()
    col1, col2 = st.columns([4, 1])
    st.sidebar.button("Submit Documents", on_click=process_documents)
    if "headers" in st.session_state:
        for header in st.session_state.headers:
            col2.info(header)
    if "messages" not in st.session_state:
        st.session_state.messages = []
    for message in st.session_state.messages:
        col1.chat_message("human").write(message[0])
        col1.chat_message("ai").write(message[1])
    if query := col1.chat_input():
        col1.chat_message("human").write(query)
        references, response = query_llm(st.session_state.retriever, query)
        for snip in references:
            st.sidebar.success(
                f'Section {" ".join(snip.metadata["header"].split()[:10])}'
            )
        col1.chat_message("ai").write(response)


if __name__ == "__main__":
    boot()