File size: 7,393 Bytes
2159374 60e8923 2159374 60e8923 2159374 60e8923 2159374 60e8923 2159374 60e8923 2159374 60e8923 2159374 60e8923 2159374 60e8923 2159374 60e8923 2159374 ecb7a48 60e8923 2159374 60e8923 2159374 60e8923 ecb7a48 60e8923 ecb7a48 60e8923 2159374 60e8923 2159374 60e8923 2159374 60e8923 2159374 60e8923 2159374 60e8923 2159374 ecb7a48 2159374 60e8923 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import math
import os
import re
from pathlib import Path
from statistics import median
import streamlit as st
from bs4 import BeautifulSoup
from langchain.chains import ConversationalRetrievalChain
from langchain.docstore.document import Document
from langchain.document_loaders import PDFMinerPDFasHTMLLoader, WebBaseLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain_openai import ChatOpenAI, OpenAI
from langchain.vectorstores import Chroma
from langchain.retrievers.multi_query import MultiQueryRetriever
from ragatouille import RAGPretrainedModel
st.set_page_config(layout="wide")
os.environ["OPENAI_API_KEY"] = "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"
LOCAL_VECTOR_STORE_DIR = Path(__file__).resolve().parent.joinpath("vector_store")
deep_strip = lambda text: re.sub(r"\s+", " ", text or "").strip()
def embeddings_on_local_vectordb(texts):
colbert = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv1.9")
colbert.index(
collection=[chunk.page_content for chunk in texts],
split_documents=False,
document_metadatas=[chunk.metadata for chunk in texts],
index_name="vector_store",
)
retriever = colbert.as_langchain_retriever(k=5)
retriever = MultiQueryRetriever.from_llm(
retriever=retriever, llm=ChatOpenAI(temperature=0)
)
return retriever
def query_llm(retriever, query):
qa_chain = ConversationalRetrievalChain.from_llm(
llm=ChatOpenAI(model="gpt-4-0125-preview", temperature=0),
retriever=retriever,
return_source_documents=True,
chain_type="stuff",
)
relevant_docs = retriever.get_relevant_documents(query)
result = qa_chain({"question": query, "chat_history": st.session_state.messages})
result = result["answer"]
st.session_state.messages.append((query, result))
return relevant_docs, result
def input_fields():
st.session_state.source_doc_urls = [
url.strip() for url in st.sidebar.text_input("Source Document URLs").split(",")
]
def process_documents():
try:
snippets = []
for url in st.session_state.source_doc_urls:
if url.endswith(".pdf"):
snippets.extend(process_pdf(url))
else:
snippets.extend(process_web(url))
st.session_state.retriever = embeddings_on_local_vectordb(snippets)
st.session_state.headers = [
" ".join(snip.metadata["header"].split()[:10]) for snip in snippets
]
except Exception as e:
st.error(f"An error occurred: {e}")
def process_pdf(url):
data = PDFMinerPDFasHTMLLoader(url).load()[0]
content = BeautifulSoup(data.page_content, "html.parser").find_all("div")
snippets = get_pdf_snippets(content)
filtered_snippets = filter_pdf_snippets(snippets, new_line_threshold_ratio=0.4)
median_font_size = math.ceil(
median([font_size for _, font_size in filtered_snippets])
)
semantic_snippets = get_pdf_semantic_snippets(filtered_snippets, median_font_size)
document_snippets = [
Document(
page_content=deep_strip(snip[1]["header_text"]) + " " + deep_strip(snip[0]),
metadata={
"header": deep_strip(snip[1]["header_text"]),
"source_url": url,
"source_type": "pdf",
},
)
for snip in semantic_snippets
]
return document_snippets
def get_pdf_snippets(content):
current_font_size = None
current_text = ""
snippets = []
for cntnt in content:
span = cntnt.find("span")
if not span:
continue
style = span.get("style")
if not style:
continue
font_size = re.findall("font-size:(\d+)px", style)
if not font_size:
continue
font_size = int(font_size[0])
if not current_font_size:
current_font_size = font_size
if font_size == current_font_size:
current_text += cntnt.text
else:
snippets.append((current_text, current_font_size))
current_font_size = font_size
current_text = cntnt.text
snippets.append((current_text, current_font_size))
return snippets
def filter_pdf_snippets(content_list, new_line_threshold_ratio):
filtered_list = []
for e, (content, font_size) in enumerate(content_list):
newline_count = content.count("\n")
total_chars = len(content)
ratio = newline_count / total_chars
if ratio <= new_line_threshold_ratio:
filtered_list.append((content, font_size))
return filtered_list
def get_pdf_semantic_snippets(filtered_snippets, median_font_size):
semantic_snippets = []
current_header = None
current_content = []
header_font_size = None
content_font_sizes = []
for content, font_size in filtered_snippets:
if font_size > median_font_size:
if current_header is not None:
metadata = {
"header_font_size": header_font_size,
"content_font_size": (
median(content_font_sizes) if content_font_sizes else None
),
"header_text": current_header,
}
semantic_snippets.append((current_content, metadata))
current_content = []
content_font_sizes = []
current_header = content
header_font_size = font_size
else:
content_font_sizes.append(font_size)
if current_content:
current_content += " " + content
else:
current_content = content
if current_header is not None:
metadata = {
"header_font_size": header_font_size,
"content_font_size": (
median(content_font_sizes) if content_font_sizes else None
),
"header_text": current_header,
}
semantic_snippets.append((current_content, metadata))
return semantic_snippets
def process_web(url):
data = WebBaseLoader(url).load()[0]
document_snippets = [
Document(
page_content=deep_strip(data.page_content),
metadata={
"header": data.metadata["title"],
"source_url": url,
"source_type": "web",
},
)
]
return document_snippets
def boot():
st.title("Xi Chatbot")
input_fields()
col1, col2 = st.columns([4, 1])
st.sidebar.button("Submit Documents", on_click=process_documents)
if "headers" in st.session_state:
for header in st.session_state.headers:
col2.info(header)
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
col1.chat_message("human").write(message[0])
col1.chat_message("ai").write(message[1])
if query := col1.chat_input():
col1.chat_message("human").write(query)
references, response = query_llm(st.session_state.retriever, query)
for snip in references:
st.sidebar.success(
f'Section {" ".join(snip.metadata["header"].split()[:10])}'
)
col1.chat_message("ai").write(response)
if __name__ == "__main__":
boot()
|