Upload 5 files
Browse files- app.py +90 -210
- command_center.py +44 -0
- embed_documents.py +18 -0
- process_documents.py +141 -0
- requirements.txt +2 -2
app.py
CHANGED
|
@@ -1,37 +1,57 @@
|
|
| 1 |
-
import
|
| 2 |
import os
|
| 3 |
-
import re
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
from statistics import median
|
| 6 |
-
import json
|
| 7 |
import pandas as pd
|
| 8 |
-
|
| 9 |
-
from
|
|
|
|
|
|
|
| 10 |
from langchain.callbacks import get_openai_callback
|
| 11 |
from langchain.chains import ConversationalRetrievalChain
|
| 12 |
-
from langchain.docstore.document import Document
|
| 13 |
-
from langchain.document_loaders import PDFMinerPDFasHTMLLoader, WebBaseLoader
|
| 14 |
-
from langchain.retrievers.multi_query import MultiQueryRetriever
|
| 15 |
from langchain_openai import ChatOpenAI
|
| 16 |
-
from ragatouille import RAGPretrainedModel
|
| 17 |
|
| 18 |
st.set_page_config(layout="wide")
|
| 19 |
os.environ["OPENAI_API_KEY"] = "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"
|
| 20 |
|
| 21 |
-
LOCAL_VECTOR_STORE_DIR = Path(__file__).resolve().parent.joinpath("vector_store")
|
| 22 |
-
|
| 23 |
-
deep_strip = lambda text: re.sub(r"\s+", " ", text or "").strip()
|
| 24 |
-
|
| 25 |
get_references = lambda relevant_docs: " ".join(
|
| 26 |
[f"[{ref}]" for ref in sorted([ref.metadata["chunk_id"] for ref in relevant_docs])]
|
| 27 |
)
|
| 28 |
session_state_2_llm_chat_history = lambda session_state: [
|
| 29 |
-
ss[:2] for ss in session_state
|
| 30 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
-
def
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
{
|
| 36 |
"document_urls": (
|
| 37 |
st.session_state.source_doc_urls
|
|
@@ -39,7 +59,7 @@ def get_conversation_history():
|
|
| 39 |
else []
|
| 40 |
),
|
| 41 |
"document_snippets": (
|
| 42 |
-
st.session_state.
|
| 43 |
if "headers" in st.session_state
|
| 44 |
else []
|
| 45 |
),
|
|
@@ -60,38 +80,28 @@ def get_conversation_history():
|
|
| 60 |
),
|
| 61 |
}
|
| 62 |
)
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
def embeddings_on_local_vectordb(texts):
|
| 69 |
-
colbert = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv1.9")
|
| 70 |
-
colbert.index(
|
| 71 |
-
collection=[chunk.page_content for chunk in texts],
|
| 72 |
-
split_documents=False,
|
| 73 |
-
document_metadatas=[chunk.metadata for chunk in texts],
|
| 74 |
-
index_name="vector_store",
|
| 75 |
-
)
|
| 76 |
-
retriever = colbert.as_langchain_retriever(k=5)
|
| 77 |
-
retriever = MultiQueryRetriever.from_llm(
|
| 78 |
-
retriever=retriever, llm=ChatOpenAI(temperature=0)
|
| 79 |
)
|
| 80 |
-
|
| 81 |
|
| 82 |
|
| 83 |
-
def
|
|
|
|
| 84 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 85 |
llm=ChatOpenAI(model="gpt-4-0125-preview", temperature=0),
|
| 86 |
retriever=retriever,
|
| 87 |
return_source_documents=True,
|
| 88 |
chain_type="stuff",
|
| 89 |
)
|
| 90 |
-
relevant_docs = retriever.get_relevant_documents(
|
| 91 |
with get_openai_callback() as cb:
|
| 92 |
result = qa_chain(
|
| 93 |
{
|
| 94 |
-
"question":
|
| 95 |
"chat_history": session_state_2_llm_chat_history(
|
| 96 |
st.session_state.messages
|
| 97 |
),
|
|
@@ -100,192 +110,62 @@ def query_llm(retriever, query):
|
|
| 100 |
stats = cb
|
| 101 |
result = result["answer"]
|
| 102 |
references = get_references(relevant_docs)
|
| 103 |
-
st.session_state.messages.append((
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
url.strip()
|
| 110 |
-
for url in st.sidebar.text_area(
|
| 111 |
-
"Source Document URLs\n(New line separated)", height=50
|
| 112 |
-
).split("\n")
|
| 113 |
-
]
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
def process_documents():
|
| 117 |
-
try:
|
| 118 |
-
snippets = []
|
| 119 |
-
for url in st.session_state.source_doc_urls:
|
| 120 |
-
if url.endswith(".pdf"):
|
| 121 |
-
snippets.extend(process_pdf(url))
|
| 122 |
-
else:
|
| 123 |
-
snippets.extend(process_web(url))
|
| 124 |
-
st.session_state.retriever = embeddings_on_local_vectordb(snippets)
|
| 125 |
-
st.session_state.headers = pd.Series(
|
| 126 |
-
[snip.metadata["header"] for snip in snippets], name="references"
|
| 127 |
-
)
|
| 128 |
-
except Exception as e:
|
| 129 |
-
st.error(f"An error occurred: {e}")
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
def process_pdf(url):
|
| 133 |
-
data = PDFMinerPDFasHTMLLoader(url).load()[0]
|
| 134 |
-
content = BeautifulSoup(data.page_content, "html.parser").find_all("div")
|
| 135 |
-
snippets = get_pdf_snippets(content)
|
| 136 |
-
filtered_snippets = filter_pdf_snippets(snippets, new_line_threshold_ratio=0.4)
|
| 137 |
-
median_font_size = math.ceil(
|
| 138 |
-
median([font_size for _, font_size in filtered_snippets])
|
| 139 |
-
)
|
| 140 |
-
semantic_snippets = get_pdf_semantic_snippets(filtered_snippets, median_font_size)
|
| 141 |
-
document_snippets = [
|
| 142 |
-
Document(
|
| 143 |
-
page_content=deep_strip(snip[1]["header_text"]) + " " + deep_strip(snip[0]),
|
| 144 |
-
metadata={
|
| 145 |
-
"header": " ".join(snip[1]["header_text"].split()[:10]),
|
| 146 |
-
"source_url": url,
|
| 147 |
-
"source_type": "pdf",
|
| 148 |
-
"chunk_id": i,
|
| 149 |
-
},
|
| 150 |
-
)
|
| 151 |
-
for i, snip in enumerate(semantic_snippets)
|
| 152 |
-
]
|
| 153 |
-
return document_snippets
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
def get_pdf_snippets(content):
|
| 157 |
-
current_font_size = None
|
| 158 |
-
current_text = ""
|
| 159 |
-
snippets = []
|
| 160 |
-
for cntnt in content:
|
| 161 |
-
span = cntnt.find("span")
|
| 162 |
-
if not span:
|
| 163 |
-
continue
|
| 164 |
-
style = span.get("style")
|
| 165 |
-
if not style:
|
| 166 |
-
continue
|
| 167 |
-
font_size = re.findall("font-size:(\d+)px", style)
|
| 168 |
-
if not font_size:
|
| 169 |
-
continue
|
| 170 |
-
font_size = int(font_size[0])
|
| 171 |
-
|
| 172 |
-
if not current_font_size:
|
| 173 |
-
current_font_size = font_size
|
| 174 |
-
if font_size == current_font_size:
|
| 175 |
-
current_text += cntnt.text
|
| 176 |
-
else:
|
| 177 |
-
snippets.append((current_text, current_font_size))
|
| 178 |
-
current_font_size = font_size
|
| 179 |
-
current_text = cntnt.text
|
| 180 |
-
snippets.append((current_text, current_font_size))
|
| 181 |
-
return snippets
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
def filter_pdf_snippets(content_list, new_line_threshold_ratio):
|
| 185 |
-
filtered_list = []
|
| 186 |
-
for e, (content, font_size) in enumerate(content_list):
|
| 187 |
-
newline_count = content.count("\n")
|
| 188 |
-
total_chars = len(content)
|
| 189 |
-
ratio = newline_count / total_chars
|
| 190 |
-
if ratio <= new_line_threshold_ratio:
|
| 191 |
-
filtered_list.append((content, font_size))
|
| 192 |
-
return filtered_list
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
def get_pdf_semantic_snippets(filtered_snippets, median_font_size):
|
| 196 |
-
semantic_snippets = []
|
| 197 |
-
current_header = None
|
| 198 |
-
current_content = []
|
| 199 |
-
header_font_size = None
|
| 200 |
-
content_font_sizes = []
|
| 201 |
-
|
| 202 |
-
for content, font_size in filtered_snippets:
|
| 203 |
-
if font_size > median_font_size:
|
| 204 |
-
if current_header is not None:
|
| 205 |
-
metadata = {
|
| 206 |
-
"header_font_size": header_font_size,
|
| 207 |
-
"content_font_size": (
|
| 208 |
-
median(content_font_sizes) if content_font_sizes else None
|
| 209 |
-
),
|
| 210 |
-
"header_text": current_header,
|
| 211 |
-
}
|
| 212 |
-
semantic_snippets.append((current_content, metadata))
|
| 213 |
-
current_content = []
|
| 214 |
-
content_font_sizes = []
|
| 215 |
-
|
| 216 |
-
current_header = content
|
| 217 |
-
header_font_size = font_size
|
| 218 |
-
else:
|
| 219 |
-
content_font_sizes.append(font_size)
|
| 220 |
-
if current_content:
|
| 221 |
-
current_content += " " + content
|
| 222 |
-
else:
|
| 223 |
-
current_content = content
|
| 224 |
-
|
| 225 |
-
if current_header is not None:
|
| 226 |
-
metadata = {
|
| 227 |
-
"header_font_size": header_font_size,
|
| 228 |
-
"content_font_size": (
|
| 229 |
-
median(content_font_sizes) if content_font_sizes else None
|
| 230 |
-
),
|
| 231 |
-
"header_text": current_header,
|
| 232 |
}
|
| 233 |
-
|
| 234 |
-
return
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
def process_web(url):
|
| 238 |
-
data = WebBaseLoader(url).load()[0]
|
| 239 |
-
document_snippets = [
|
| 240 |
-
Document(
|
| 241 |
-
page_content=deep_strip(data.page_content),
|
| 242 |
-
metadata={
|
| 243 |
-
"header": data.metadata["title"],
|
| 244 |
-
"source_url": url,
|
| 245 |
-
"source_type": "web",
|
| 246 |
-
},
|
| 247 |
-
)
|
| 248 |
-
]
|
| 249 |
-
return document_snippets
|
| 250 |
|
| 251 |
|
| 252 |
-
def boot():
|
| 253 |
st.title("Agent Xi - An ArXiv Chatbot")
|
| 254 |
-
st.sidebar.title("Input Documents")
|
| 255 |
-
input_fields()
|
| 256 |
-
st.sidebar.button("Submit Documents", on_click=process_documents)
|
| 257 |
-
if "headers" in st.session_state:
|
| 258 |
-
st.sidebar.write("### References")
|
| 259 |
-
st.sidebar.write(st.session_state.headers)
|
| 260 |
if "costing" not in st.session_state:
|
| 261 |
st.session_state.costing = []
|
| 262 |
if "messages" not in st.session_state:
|
| 263 |
st.session_state.messages = []
|
| 264 |
-
|
| 265 |
for message in st.session_state.messages:
|
| 266 |
st.chat_message("human").write(message[0])
|
| 267 |
st.chat_message("ai").write(ai_message_format(message[1], message[2]))
|
| 268 |
if query := st.chat_input():
|
| 269 |
st.chat_message("human").write(query)
|
| 270 |
-
response
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
{
|
| 275 |
-
"
|
| 276 |
-
"
|
| 277 |
-
"cost": stats.total_cost,
|
| 278 |
}
|
| 279 |
)
|
| 280 |
-
stats_df = pd.DataFrame(st.session_state.costing)
|
| 281 |
-
stats_df.loc["total"] = stats_df.sum()
|
| 282 |
-
st.sidebar.write(stats_df)
|
| 283 |
-
st.sidebar.download_button(
|
| 284 |
-
"Download Conversation",
|
| 285 |
-
get_conversation_history(),
|
| 286 |
-
"conversation.json",
|
| 287 |
)
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
+
from command_center import CommandCenter
|
| 5 |
+
from process_documents import process_documents
|
| 6 |
+
from embed_documents import create_retriever
|
| 7 |
+
import json
|
| 8 |
from langchain.callbacks import get_openai_callback
|
| 9 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
|
|
|
|
|
|
|
| 10 |
from langchain_openai import ChatOpenAI
|
|
|
|
| 11 |
|
| 12 |
st.set_page_config(layout="wide")
|
| 13 |
os.environ["OPENAI_API_KEY"] = "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"
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
get_references = lambda relevant_docs: " ".join(
|
| 16 |
[f"[{ref}]" for ref in sorted([ref.metadata["chunk_id"] for ref in relevant_docs])]
|
| 17 |
)
|
| 18 |
session_state_2_llm_chat_history = lambda session_state: [
|
| 19 |
+
ss[:2] for ss in session_state if not ss[0].startswith("/")
|
| 20 |
]
|
| 21 |
+
ai_message_format = lambda message, references: (
|
| 22 |
+
f"{message}\n\n---\n\n{references}" if references != "" else message
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def process_documents_wrapper(inputs):
|
| 27 |
+
snippets = process_documents(inputs)
|
| 28 |
+
st.session_state.retriever = create_retriever(snippets)
|
| 29 |
+
st.session_state.source_doc_urls = inputs
|
| 30 |
+
st.session_state.index = [snip.metadata["header"] for snip in snippets]
|
| 31 |
+
response = f"Uploaded and processed documents {inputs}"
|
| 32 |
+
st.session_state.messages.append((f"/upload {inputs}", response, ""))
|
| 33 |
+
return response
|
| 34 |
|
| 35 |
|
| 36 |
+
def index_documents_wrapper(inputs=None):
|
| 37 |
+
response = pd.Series(st.session_state.index, name="references").to_markdown()
|
| 38 |
+
st.session_state.messages.append(("/index", response, ""))
|
| 39 |
+
return response
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def calculate_cost_wrapper(inputs=None):
|
| 43 |
+
try:
|
| 44 |
+
stats_df = pd.DataFrame(st.session_state.costing)
|
| 45 |
+
stats_df.loc["total"] = stats_df.sum()
|
| 46 |
+
response = stats_df.to_markdown()
|
| 47 |
+
except ValueError:
|
| 48 |
+
response = "No costing incurred yet"
|
| 49 |
+
st.session_state.messages.append(("/cost", response, ""))
|
| 50 |
+
return response
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def download_conversation_wrapper(inputs=None):
|
| 54 |
+
conversation_data = json.dumps(
|
| 55 |
{
|
| 56 |
"document_urls": (
|
| 57 |
st.session_state.source_doc_urls
|
|
|
|
| 59 |
else []
|
| 60 |
),
|
| 61 |
"document_snippets": (
|
| 62 |
+
st.session_state.index.to_list()
|
| 63 |
if "headers" in st.session_state
|
| 64 |
else []
|
| 65 |
),
|
|
|
|
| 80 |
),
|
| 81 |
}
|
| 82 |
)
|
| 83 |
+
st.sidebar.download_button(
|
| 84 |
+
"Download Conversation",
|
| 85 |
+
conversation_data,
|
| 86 |
+
file_name="conversation_data.json",
|
| 87 |
+
mime="application/json",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
)
|
| 89 |
+
st.session_state.messages.append(("/download", "Conversation data downloaded", ""))
|
| 90 |
|
| 91 |
|
| 92 |
+
def query_llm_wrapper(inputs):
|
| 93 |
+
retriever = st.session_state.retriever
|
| 94 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 95 |
llm=ChatOpenAI(model="gpt-4-0125-preview", temperature=0),
|
| 96 |
retriever=retriever,
|
| 97 |
return_source_documents=True,
|
| 98 |
chain_type="stuff",
|
| 99 |
)
|
| 100 |
+
relevant_docs = retriever.get_relevant_documents(inputs)
|
| 101 |
with get_openai_callback() as cb:
|
| 102 |
result = qa_chain(
|
| 103 |
{
|
| 104 |
+
"question": inputs,
|
| 105 |
"chat_history": session_state_2_llm_chat_history(
|
| 106 |
st.session_state.messages
|
| 107 |
),
|
|
|
|
| 110 |
stats = cb
|
| 111 |
result = result["answer"]
|
| 112 |
references = get_references(relevant_docs)
|
| 113 |
+
st.session_state.messages.append((inputs, result, references))
|
| 114 |
+
st.session_state.costing.append(
|
| 115 |
+
{
|
| 116 |
+
"prompt tokens": stats.prompt_tokens,
|
| 117 |
+
"completion tokens": stats.completion_tokens,
|
| 118 |
+
"cost": stats.total_cost,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
}
|
| 120 |
+
)
|
| 121 |
+
return result, references
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
|
| 124 |
+
def boot(command_center):
|
| 125 |
st.title("Agent Xi - An ArXiv Chatbot")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
if "costing" not in st.session_state:
|
| 127 |
st.session_state.costing = []
|
| 128 |
if "messages" not in st.session_state:
|
| 129 |
st.session_state.messages = []
|
|
|
|
| 130 |
for message in st.session_state.messages:
|
| 131 |
st.chat_message("human").write(message[0])
|
| 132 |
st.chat_message("ai").write(ai_message_format(message[1], message[2]))
|
| 133 |
if query := st.chat_input():
|
| 134 |
st.chat_message("human").write(query)
|
| 135 |
+
response = command_center.execute_command(query)
|
| 136 |
+
if response is None:
|
| 137 |
+
pass
|
| 138 |
+
elif type(response) == tuple:
|
| 139 |
+
result, references = response
|
| 140 |
+
st.chat_message("ai").write(ai_message_format(result, references))
|
| 141 |
+
else:
|
| 142 |
+
st.chat_message("ai").write(response)
|
| 143 |
+
|
| 144 |
|
| 145 |
+
if __name__ == "__main__":
|
| 146 |
+
all_commands = [
|
| 147 |
+
("/upload", list, process_documents_wrapper, "Upload and process documents"),
|
| 148 |
+
("/index", None, index_documents_wrapper, "View index of processed documents"),
|
| 149 |
+
("/cost", None, calculate_cost_wrapper, "Calculate cost of conversation"),
|
| 150 |
+
(
|
| 151 |
+
"/download",
|
| 152 |
+
None,
|
| 153 |
+
download_conversation_wrapper,
|
| 154 |
+
"Download conversation data",
|
| 155 |
+
),
|
| 156 |
+
]
|
| 157 |
+
st.sidebar.title("Commands Menu")
|
| 158 |
+
st.sidebar.write(
|
| 159 |
+
pd.DataFrame(
|
| 160 |
{
|
| 161 |
+
"Command": [command[0] for command in all_commands],
|
| 162 |
+
"Description": [command[3] for command in all_commands],
|
|
|
|
| 163 |
}
|
| 164 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
)
|
| 166 |
+
command_center = CommandCenter(
|
| 167 |
+
default_input_type=str,
|
| 168 |
+
default_function=query_llm_wrapper,
|
| 169 |
+
all_commands=[command[:3] for command in all_commands],
|
| 170 |
+
)
|
| 171 |
+
boot(command_center)
|
command_center.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class CommandCenter:
|
| 2 |
+
def __init__(self, default_input_type, default_function=None, all_commands=None):
|
| 3 |
+
self.commands = {}
|
| 4 |
+
self.add_command("/default", default_input_type, default_function)
|
| 5 |
+
if all_commands:
|
| 6 |
+
for command, input_type, function in all_commands:
|
| 7 |
+
self.add_command(command, input_type, function)
|
| 8 |
+
|
| 9 |
+
def add_command(self, command, input_type, function=None):
|
| 10 |
+
assert input_type in [None, str, int, float, bool, list], "Invalid input type"
|
| 11 |
+
self.commands[command] = {"input_type": input_type, "function": function}
|
| 12 |
+
|
| 13 |
+
def parse_command(self, input_string):
|
| 14 |
+
# parsing the input string
|
| 15 |
+
if not input_string.startswith("/"):
|
| 16 |
+
command = "/default"
|
| 17 |
+
argument = input_string.split(" ")
|
| 18 |
+
else:
|
| 19 |
+
inputs = input_string.split(" ")
|
| 20 |
+
command = inputs[0]
|
| 21 |
+
argument = inputs[1:]
|
| 22 |
+
|
| 23 |
+
# type casting the arguments
|
| 24 |
+
if self.commands[command]["input_type"] == str:
|
| 25 |
+
argument = " ".join(argument)
|
| 26 |
+
elif self.commands[command]["input_type"] == int:
|
| 27 |
+
argument = int(" ".join(argument))
|
| 28 |
+
elif self.commands[command]["input_type"] == float:
|
| 29 |
+
argument = float(" ".join(argument))
|
| 30 |
+
elif self.commands[command]["input_type"] == bool:
|
| 31 |
+
argument = bool(" ".join(argument))
|
| 32 |
+
elif self.commands[command]["input_type"] == list:
|
| 33 |
+
argument = argument
|
| 34 |
+
else:
|
| 35 |
+
argument = None
|
| 36 |
+
|
| 37 |
+
return command, argument
|
| 38 |
+
|
| 39 |
+
def execute_command(self, input_string):
|
| 40 |
+
command, argument = self.parse_command(input_string)
|
| 41 |
+
if command in self.commands:
|
| 42 |
+
return self.commands[command]["function"](argument)
|
| 43 |
+
else:
|
| 44 |
+
return "Invalid command"
|
embed_documents.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.retrievers.multi_query import MultiQueryRetriever
|
| 2 |
+
from langchain_openai import ChatOpenAI
|
| 3 |
+
from ragatouille import RAGPretrainedModel
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def create_retriever(texts):
|
| 7 |
+
colbert = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv1.9")
|
| 8 |
+
colbert.index(
|
| 9 |
+
collection=[chunk.page_content for chunk in texts],
|
| 10 |
+
split_documents=False,
|
| 11 |
+
document_metadatas=[chunk.metadata for chunk in texts],
|
| 12 |
+
index_name="vector_store",
|
| 13 |
+
)
|
| 14 |
+
retriever = colbert.as_langchain_retriever(k=5)
|
| 15 |
+
retriever = MultiQueryRetriever.from_llm(
|
| 16 |
+
retriever=retriever, llm=ChatOpenAI(temperature=0)
|
| 17 |
+
)
|
| 18 |
+
return retriever
|
process_documents.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import re
|
| 3 |
+
from statistics import median
|
| 4 |
+
from bs4 import BeautifulSoup
|
| 5 |
+
from langchain.docstore.document import Document
|
| 6 |
+
from langchain.document_loaders import PDFMinerPDFasHTMLLoader, WebBaseLoader
|
| 7 |
+
|
| 8 |
+
deep_strip = lambda text: re.sub(r"\s+", " ", text or "").strip()
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def process_documents(urls):
|
| 12 |
+
snippets = []
|
| 13 |
+
for url in urls:
|
| 14 |
+
if url.endswith(".pdf"):
|
| 15 |
+
snippets.extend(process_pdf(url))
|
| 16 |
+
else:
|
| 17 |
+
snippets.extend(process_web(url))
|
| 18 |
+
for e, snippet in enumerate(snippets):
|
| 19 |
+
snippet.metadata["chunk_id"] = e
|
| 20 |
+
return snippets
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def process_pdf(url):
|
| 24 |
+
data = PDFMinerPDFasHTMLLoader(url).load()[0]
|
| 25 |
+
content = BeautifulSoup(data.page_content, "html.parser").find_all("div")
|
| 26 |
+
snippets = get_pdf_snippets(content)
|
| 27 |
+
filtered_snippets = filter_pdf_snippets(snippets, new_line_threshold_ratio=0.4)
|
| 28 |
+
median_font_size = math.ceil(
|
| 29 |
+
median([font_size for _, font_size in filtered_snippets])
|
| 30 |
+
)
|
| 31 |
+
semantic_snippets = get_pdf_semantic_snippets(filtered_snippets, median_font_size)
|
| 32 |
+
document_snippets = [
|
| 33 |
+
Document(
|
| 34 |
+
page_content=deep_strip(snip[1]["header_text"]) + " " + deep_strip(snip[0]),
|
| 35 |
+
metadata={
|
| 36 |
+
"header": " ".join(snip[1]["header_text"].split()[:10]),
|
| 37 |
+
"source_url": url,
|
| 38 |
+
"source_type": "pdf",
|
| 39 |
+
"chunk_id": i,
|
| 40 |
+
},
|
| 41 |
+
)
|
| 42 |
+
for i, snip in enumerate(semantic_snippets)
|
| 43 |
+
]
|
| 44 |
+
return document_snippets
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def get_pdf_snippets(content):
|
| 48 |
+
current_font_size = None
|
| 49 |
+
current_text = ""
|
| 50 |
+
snippets = []
|
| 51 |
+
for cntnt in content:
|
| 52 |
+
span = cntnt.find("span")
|
| 53 |
+
if not span:
|
| 54 |
+
continue
|
| 55 |
+
style = span.get("style")
|
| 56 |
+
if not style:
|
| 57 |
+
continue
|
| 58 |
+
font_size = re.findall("font-size:(\d+)px", style)
|
| 59 |
+
if not font_size:
|
| 60 |
+
continue
|
| 61 |
+
font_size = int(font_size[0])
|
| 62 |
+
|
| 63 |
+
if not current_font_size:
|
| 64 |
+
current_font_size = font_size
|
| 65 |
+
if font_size == current_font_size:
|
| 66 |
+
current_text += cntnt.text
|
| 67 |
+
else:
|
| 68 |
+
snippets.append((current_text, current_font_size))
|
| 69 |
+
current_font_size = font_size
|
| 70 |
+
current_text = cntnt.text
|
| 71 |
+
snippets.append((current_text, current_font_size))
|
| 72 |
+
return snippets
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def filter_pdf_snippets(content_list, new_line_threshold_ratio):
|
| 76 |
+
filtered_list = []
|
| 77 |
+
for e, (content, font_size) in enumerate(content_list):
|
| 78 |
+
newline_count = content.count("\n")
|
| 79 |
+
total_chars = len(content)
|
| 80 |
+
ratio = newline_count / total_chars
|
| 81 |
+
if ratio <= new_line_threshold_ratio:
|
| 82 |
+
filtered_list.append((content, font_size))
|
| 83 |
+
return filtered_list
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def get_pdf_semantic_snippets(filtered_snippets, median_font_size):
|
| 87 |
+
semantic_snippets = []
|
| 88 |
+
current_header = None
|
| 89 |
+
current_content = []
|
| 90 |
+
header_font_size = None
|
| 91 |
+
content_font_sizes = []
|
| 92 |
+
|
| 93 |
+
for content, font_size in filtered_snippets:
|
| 94 |
+
if font_size > median_font_size:
|
| 95 |
+
if current_header is not None:
|
| 96 |
+
metadata = {
|
| 97 |
+
"header_font_size": header_font_size,
|
| 98 |
+
"content_font_size": (
|
| 99 |
+
median(content_font_sizes) if content_font_sizes else None
|
| 100 |
+
),
|
| 101 |
+
"header_text": current_header,
|
| 102 |
+
}
|
| 103 |
+
semantic_snippets.append((current_content, metadata))
|
| 104 |
+
current_content = []
|
| 105 |
+
content_font_sizes = []
|
| 106 |
+
|
| 107 |
+
current_header = content
|
| 108 |
+
header_font_size = font_size
|
| 109 |
+
else:
|
| 110 |
+
content_font_sizes.append(font_size)
|
| 111 |
+
if current_content:
|
| 112 |
+
current_content += " " + content
|
| 113 |
+
else:
|
| 114 |
+
current_content = content
|
| 115 |
+
|
| 116 |
+
if current_header is not None:
|
| 117 |
+
metadata = {
|
| 118 |
+
"header_font_size": header_font_size,
|
| 119 |
+
"content_font_size": (
|
| 120 |
+
median(content_font_sizes) if content_font_sizes else None
|
| 121 |
+
),
|
| 122 |
+
"header_text": current_header,
|
| 123 |
+
}
|
| 124 |
+
semantic_snippets.append((current_content, metadata))
|
| 125 |
+
return semantic_snippets
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def process_web(url):
|
| 129 |
+
data = WebBaseLoader(url).load()[0]
|
| 130 |
+
document_snippets = [
|
| 131 |
+
Document(
|
| 132 |
+
page_content=deep_strip(data.page_content),
|
| 133 |
+
metadata={
|
| 134 |
+
"header": data.metadata["title"],
|
| 135 |
+
"source_url": url,
|
| 136 |
+
"source_type": "web",
|
| 137 |
+
"chunk_id": 0,
|
| 138 |
+
},
|
| 139 |
+
)
|
| 140 |
+
]
|
| 141 |
+
return document_snippets
|
requirements.txt
CHANGED
|
@@ -4,9 +4,9 @@ langchain-community==0.0.24
|
|
| 4 |
langchain-core==0.1.27
|
| 5 |
langchain-experimental==0.0.49
|
| 6 |
langchain-openai==0.0.8
|
| 7 |
-
chromadb==0.4.22
|
| 8 |
tiktoken==0.5.2
|
| 9 |
pdfminer.six==20231228
|
| 10 |
beautifulsoup4==4.12.3
|
| 11 |
RAGatouille==0.0.7.post7
|
| 12 |
-
pandas==2.2.1
|
|
|
|
|
|
| 4 |
langchain-core==0.1.27
|
| 5 |
langchain-experimental==0.0.49
|
| 6 |
langchain-openai==0.0.8
|
|
|
|
| 7 |
tiktoken==0.5.2
|
| 8 |
pdfminer.six==20231228
|
| 9 |
beautifulsoup4==4.12.3
|
| 10 |
RAGatouille==0.0.7.post7
|
| 11 |
+
pandas==2.2.1
|
| 12 |
+
tabulate==0.9.0
|