Spaces:
Runtime error
Runtime error
| # -------------------------------------------------------- | |
| # UniFormer | |
| # Copyright (c) 2022 SenseTime X-Lab | |
| # Licensed under The MIT License [see LICENSE for details] | |
| # Written by Kunchang Li | |
| # -------------------------------------------------------- | |
| from collections import OrderedDict | |
| import math | |
| from functools import partial | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint as checkpoint | |
| import numpy as np | |
| from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
| from mmcv_custom import load_checkpoint | |
| from mmdet.utils import get_root_logger | |
| from ..builder import BACKBONES | |
| class Mlp(nn.Module): | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.act = act_layer() | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| self.drop = nn.Dropout(drop) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| class CMlp(nn.Module): | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Conv2d(in_features, hidden_features, 1) | |
| self.act = act_layer() | |
| self.fc2 = nn.Conv2d(hidden_features, out_features, 1) | |
| self.drop = nn.Dropout(drop) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| class CBlock(nn.Module): | |
| def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
| drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) | |
| self.norm1 = nn.BatchNorm2d(dim) | |
| self.conv1 = nn.Conv2d(dim, dim, 1) | |
| self.conv2 = nn.Conv2d(dim, dim, 1) | |
| self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim) | |
| # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = nn.BatchNorm2d(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| def forward(self, x): | |
| x = x + self.pos_embed(x) | |
| x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x))))) | |
| x = x + self.drop_path(self.mlp(self.norm2(x))) | |
| return x | |
| class Attention(nn.Module): | |
| def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
| self.scale = qk_scale or head_dim ** -0.5 | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| def forward(self, x): | |
| B, N, C = x.shape | |
| qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
| attn = (q @ k.transpose(-2, -1)) * self.scale | |
| attn = attn.softmax(dim=-1) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class SABlock(nn.Module): | |
| def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
| drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) | |
| self.norm1 = norm_layer(dim) | |
| self.attn = Attention( | |
| dim, | |
| num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| attn_drop=attn_drop, proj_drop=drop) | |
| # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| def forward(self, x): | |
| x = x + self.pos_embed(x) | |
| B, N, H, W = x.shape | |
| x = x.flatten(2).transpose(1, 2) | |
| x = x + self.drop_path(self.attn(self.norm1(x))) | |
| x = x + self.drop_path(self.mlp(self.norm2(x))) | |
| x = x.transpose(1, 2).reshape(B, N, H, W) | |
| return x | |
| def window_partition(x, window_size): | |
| """ | |
| Args: | |
| x: (B, H, W, C) | |
| window_size (int): window size | |
| Returns: | |
| windows: (num_windows*B, window_size, window_size, C) | |
| """ | |
| B, H, W, C = x.shape | |
| x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | |
| windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
| return windows | |
| def window_reverse(windows, window_size, H, W): | |
| """ | |
| Args: | |
| windows: (num_windows*B, window_size, window_size, C) | |
| window_size (int): Window size | |
| H (int): Height of image | |
| W (int): Width of image | |
| Returns: | |
| x: (B, H, W, C) | |
| """ | |
| B = int(windows.shape[0] / (H * W / window_size / window_size)) | |
| x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | |
| x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
| return x | |
| class SABlock_Windows(nn.Module): | |
| def __init__(self, dim, num_heads, window_size=14, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
| drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.window_size=window_size | |
| self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) | |
| self.norm1 = norm_layer(dim) | |
| self.attn = Attention( | |
| dim, | |
| num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| attn_drop=attn_drop, proj_drop=drop) | |
| # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| def forward(self, x): | |
| x = x + self.pos_embed(x) | |
| x = x.permute(0, 2, 3, 1) | |
| B, H, W, C = x.shape | |
| shortcut = x | |
| x = self.norm1(x) | |
| pad_l = pad_t = 0 | |
| pad_r = (self.window_size - W % self.window_size) % self.window_size | |
| pad_b = (self.window_size - H % self.window_size) % self.window_size | |
| x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) | |
| _, Hp, Wp, _ = x.shape | |
| x_windows = window_partition(x, self.window_size) # nW*B, window_size, window_size, C | |
| x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C | |
| # W-MSA/SW-MSA | |
| attn_windows = self.attn(x_windows) # nW*B, window_size*window_size, C | |
| # merge windows | |
| attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | |
| x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C | |
| # reverse cyclic shift | |
| if pad_r > 0 or pad_b > 0: | |
| x = x[:, :H, :W, :].contiguous() | |
| x = shortcut + self.drop_path(x) | |
| x = x + self.drop_path(self.mlp(self.norm2(x))) | |
| x = x.permute(0, 3, 1, 2).reshape(B, C, H, W) | |
| return x | |
| class PatchEmbed(nn.Module): | |
| """ Image to Patch Embedding | |
| """ | |
| def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
| super().__init__() | |
| img_size = to_2tuple(img_size) | |
| patch_size = to_2tuple(patch_size) | |
| num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) | |
| self.img_size = img_size | |
| self.patch_size = patch_size | |
| self.num_patches = num_patches | |
| self.norm = nn.LayerNorm(embed_dim) | |
| self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
| def forward(self, x): | |
| B, _, H, W = x.shape | |
| x = self.proj(x) | |
| B, _, H, W = x.shape | |
| x = x.flatten(2).transpose(1, 2) | |
| x = self.norm(x) | |
| x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
| return x | |
| class UniFormer(nn.Module): | |
| """ Vision Transformer | |
| A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - | |
| https://arxiv.org/abs/2010.11929 | |
| """ | |
| def __init__(self, layers=[3, 4, 8, 3], img_size=224, in_chans=3, num_classes=80, embed_dim=[64, 128, 320, 512], | |
| head_dim=64, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, | |
| drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| pretrained_path=None, use_checkpoint=False, checkpoint_num=[0, 0, 0, 0], | |
| windows=False, hybrid=False, window_size=14): | |
| """ | |
| Args: | |
| layer (list): number of block in each layer | |
| img_size (int, tuple): input image size | |
| in_chans (int): number of input channels | |
| num_classes (int): number of classes for classification head | |
| embed_dim (int): embedding dimension | |
| head_dim (int): dimension of attention heads | |
| mlp_ratio (int): ratio of mlp hidden dim to embedding dim | |
| qkv_bias (bool): enable bias for qkv if True | |
| qk_scale (float): override default qk scale of head_dim ** -0.5 if set | |
| representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set | |
| drop_rate (float): dropout rate | |
| attn_drop_rate (float): attention dropout rate | |
| drop_path_rate (float): stochastic depth rate | |
| norm_layer (nn.Module): normalization layer | |
| pretrained_path (str): path of pretrained model | |
| use_checkpoint (bool): whether use checkpoint | |
| checkpoint_num (list): index for using checkpoint in every stage | |
| windows (bool): whether use window MHRA | |
| hybrid (bool): whether use hybrid MHRA | |
| window_size (int): size of window (>14) | |
| """ | |
| super().__init__() | |
| self.num_classes = num_classes | |
| self.use_checkpoint = use_checkpoint | |
| self.checkpoint_num = checkpoint_num | |
| self.windows = windows | |
| print(f'Use Checkpoint: {self.use_checkpoint}') | |
| print(f'Checkpoint Number: {self.checkpoint_num}') | |
| self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
| norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
| self.patch_embed1 = PatchEmbed( | |
| img_size=img_size, patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0]) | |
| self.patch_embed2 = PatchEmbed( | |
| img_size=img_size // 4, patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1]) | |
| self.patch_embed3 = PatchEmbed( | |
| img_size=img_size // 8, patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2]) | |
| self.patch_embed4 = PatchEmbed( | |
| img_size=img_size // 16, patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3]) | |
| self.pos_drop = nn.Dropout(p=drop_rate) | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(layers))] # stochastic depth decay rule | |
| num_heads = [dim // head_dim for dim in embed_dim] | |
| self.blocks1 = nn.ModuleList([ | |
| CBlock( | |
| dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | |
| for i in range(layers[0])]) | |
| self.norm1=norm_layer(embed_dim[0]) | |
| self.blocks2 = nn.ModuleList([ | |
| CBlock( | |
| dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]], norm_layer=norm_layer) | |
| for i in range(layers[1])]) | |
| self.norm2 = norm_layer(embed_dim[1]) | |
| if self.windows: | |
| print('Use local window for all blocks in stage3') | |
| self.blocks3 = nn.ModuleList([ | |
| SABlock_Windows( | |
| dim=embed_dim[2], num_heads=num_heads[2], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer) | |
| for i in range(layers[2])]) | |
| elif hybrid: | |
| print('Use hybrid window for blocks in stage3') | |
| block3 = [] | |
| for i in range(layers[2]): | |
| if (i + 1) % 4 == 0: | |
| block3.append(SABlock( | |
| dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer)) | |
| else: | |
| block3.append(SABlock_Windows( | |
| dim=embed_dim[2], num_heads=num_heads[2], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer)) | |
| self.blocks3 = nn.ModuleList(block3) | |
| else: | |
| print('Use global window for all blocks in stage3') | |
| self.blocks3 = nn.ModuleList([ | |
| SABlock( | |
| dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer) | |
| for i in range(layers[2])]) | |
| self.norm3 = norm_layer(embed_dim[2]) | |
| self.blocks4 = nn.ModuleList([ | |
| SABlock( | |
| dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]+layers[2]], norm_layer=norm_layer) | |
| for i in range(layers[3])]) | |
| self.norm4 = norm_layer(embed_dim[3]) | |
| # Representation layer | |
| if representation_size: | |
| self.num_features = representation_size | |
| self.pre_logits = nn.Sequential(OrderedDict([ | |
| ('fc', nn.Linear(embed_dim, representation_size)), | |
| ('act', nn.Tanh()) | |
| ])) | |
| else: | |
| self.pre_logits = nn.Identity() | |
| self.apply(self._init_weights) | |
| self.init_weights(pretrained=pretrained_path) | |
| def init_weights(self, pretrained): | |
| if isinstance(pretrained, str): | |
| logger = get_root_logger() | |
| load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger) | |
| print(f'Load pretrained model from {pretrained}') | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| def no_weight_decay(self): | |
| return {'pos_embed', 'cls_token'} | |
| def get_classifier(self): | |
| return self.head | |
| def reset_classifier(self, num_classes, global_pool=''): | |
| self.num_classes = num_classes | |
| self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
| def forward_features(self, x): | |
| out = [] | |
| x = self.patch_embed1(x) | |
| x = self.pos_drop(x) | |
| for i, blk in enumerate(self.blocks1): | |
| if self.use_checkpoint and i < self.checkpoint_num[0]: | |
| x = checkpoint.checkpoint(blk, x) | |
| else: | |
| x = blk(x) | |
| x_out = self.norm1(x.permute(0, 2, 3, 1)) | |
| out.append(x_out.permute(0, 3, 1, 2).contiguous()) | |
| x = self.patch_embed2(x) | |
| for i, blk in enumerate(self.blocks2): | |
| if self.use_checkpoint and i < self.checkpoint_num[1]: | |
| x = checkpoint.checkpoint(blk, x) | |
| else: | |
| x = blk(x) | |
| x_out = self.norm2(x.permute(0, 2, 3, 1)) | |
| out.append(x_out.permute(0, 3, 1, 2).contiguous()) | |
| x = self.patch_embed3(x) | |
| for i, blk in enumerate(self.blocks3): | |
| if self.use_checkpoint and i < self.checkpoint_num[2]: | |
| x = checkpoint.checkpoint(blk, x) | |
| else: | |
| x = blk(x) | |
| x_out = self.norm3(x.permute(0, 2, 3, 1)) | |
| out.append(x_out.permute(0, 3, 1, 2).contiguous()) | |
| x = self.patch_embed4(x) | |
| for i, blk in enumerate(self.blocks4): | |
| if self.use_checkpoint and i < self.checkpoint_num[3]: | |
| x = checkpoint.checkpoint(blk, x) | |
| else: | |
| x = blk(x) | |
| x_out = self.norm4(x.permute(0, 2, 3, 1)) | |
| out.append(x_out.permute(0, 3, 1, 2).contiguous()) | |
| return tuple(out) | |
| def forward(self, x): | |
| x = self.forward_features(x) | |
| return x | |