Spaces:
Runtime error
Runtime error
| from abc import ABCMeta, abstractmethod | |
| from collections import OrderedDict | |
| import mmcv | |
| import numpy as np | |
| import torch | |
| import torch.distributed as dist | |
| import torch.nn as nn | |
| from mmcv.runner import auto_fp16 | |
| from mmcv.utils import print_log | |
| from mmdet.core.visualization import imshow_det_bboxes | |
| from mmdet.utils import get_root_logger | |
| class BaseDetector(nn.Module, metaclass=ABCMeta): | |
| """Base class for detectors.""" | |
| def __init__(self): | |
| super(BaseDetector, self).__init__() | |
| self.fp16_enabled = False | |
| def with_neck(self): | |
| """bool: whether the detector has a neck""" | |
| return hasattr(self, 'neck') and self.neck is not None | |
| # TODO: these properties need to be carefully handled | |
| # for both single stage & two stage detectors | |
| def with_shared_head(self): | |
| """bool: whether the detector has a shared head in the RoI Head""" | |
| return hasattr(self, 'roi_head') and self.roi_head.with_shared_head | |
| def with_bbox(self): | |
| """bool: whether the detector has a bbox head""" | |
| return ((hasattr(self, 'roi_head') and self.roi_head.with_bbox) | |
| or (hasattr(self, 'bbox_head') and self.bbox_head is not None)) | |
| def with_mask(self): | |
| """bool: whether the detector has a mask head""" | |
| return ((hasattr(self, 'roi_head') and self.roi_head.with_mask) | |
| or (hasattr(self, 'mask_head') and self.mask_head is not None)) | |
| def extract_feat(self, imgs): | |
| """Extract features from images.""" | |
| pass | |
| def extract_feats(self, imgs): | |
| """Extract features from multiple images. | |
| Args: | |
| imgs (list[torch.Tensor]): A list of images. The images are | |
| augmented from the same image but in different ways. | |
| Returns: | |
| list[torch.Tensor]: Features of different images | |
| """ | |
| assert isinstance(imgs, list) | |
| return [self.extract_feat(img) for img in imgs] | |
| def forward_train(self, imgs, img_metas, **kwargs): | |
| """ | |
| Args: | |
| img (list[Tensor]): List of tensors of shape (1, C, H, W). | |
| Typically these should be mean centered and std scaled. | |
| img_metas (list[dict]): List of image info dict where each dict | |
| has: 'img_shape', 'scale_factor', 'flip', and may also contain | |
| 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. | |
| For details on the values of these keys, see | |
| :class:`mmdet.datasets.pipelines.Collect`. | |
| kwargs (keyword arguments): Specific to concrete implementation. | |
| """ | |
| # NOTE the batched image size information may be useful, e.g. | |
| # in DETR, this is needed for the construction of masks, which is | |
| # then used for the transformer_head. | |
| batch_input_shape = tuple(imgs[0].size()[-2:]) | |
| for img_meta in img_metas: | |
| img_meta['batch_input_shape'] = batch_input_shape | |
| async def async_simple_test(self, img, img_metas, **kwargs): | |
| raise NotImplementedError | |
| def simple_test(self, img, img_metas, **kwargs): | |
| pass | |
| def aug_test(self, imgs, img_metas, **kwargs): | |
| """Test function with test time augmentation.""" | |
| pass | |
| def init_weights(self, pretrained=None): | |
| """Initialize the weights in detector. | |
| Args: | |
| pretrained (str, optional): Path to pre-trained weights. | |
| Defaults to None. | |
| """ | |
| if pretrained is not None: | |
| logger = get_root_logger() | |
| print_log(f'load model from: {pretrained}', logger=logger) | |
| async def aforward_test(self, *, img, img_metas, **kwargs): | |
| for var, name in [(img, 'img'), (img_metas, 'img_metas')]: | |
| if not isinstance(var, list): | |
| raise TypeError(f'{name} must be a list, but got {type(var)}') | |
| num_augs = len(img) | |
| if num_augs != len(img_metas): | |
| raise ValueError(f'num of augmentations ({len(img)}) ' | |
| f'!= num of image metas ({len(img_metas)})') | |
| # TODO: remove the restriction of samples_per_gpu == 1 when prepared | |
| samples_per_gpu = img[0].size(0) | |
| assert samples_per_gpu == 1 | |
| if num_augs == 1: | |
| return await self.async_simple_test(img[0], img_metas[0], **kwargs) | |
| else: | |
| raise NotImplementedError | |
| def forward_test(self, imgs, img_metas, **kwargs): | |
| """ | |
| Args: | |
| imgs (List[Tensor]): the outer list indicates test-time | |
| augmentations and inner Tensor should have a shape NxCxHxW, | |
| which contains all images in the batch. | |
| img_metas (List[List[dict]]): the outer list indicates test-time | |
| augs (multiscale, flip, etc.) and the inner list indicates | |
| images in a batch. | |
| """ | |
| for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]: | |
| if not isinstance(var, list): | |
| raise TypeError(f'{name} must be a list, but got {type(var)}') | |
| num_augs = len(imgs) | |
| if num_augs != len(img_metas): | |
| raise ValueError(f'num of augmentations ({len(imgs)}) ' | |
| f'!= num of image meta ({len(img_metas)})') | |
| # NOTE the batched image size information may be useful, e.g. | |
| # in DETR, this is needed for the construction of masks, which is | |
| # then used for the transformer_head. | |
| for img, img_meta in zip(imgs, img_metas): | |
| batch_size = len(img_meta) | |
| for img_id in range(batch_size): | |
| img_meta[img_id]['batch_input_shape'] = tuple(img.size()[-2:]) | |
| if num_augs == 1: | |
| # proposals (List[List[Tensor]]): the outer list indicates | |
| # test-time augs (multiscale, flip, etc.) and the inner list | |
| # indicates images in a batch. | |
| # The Tensor should have a shape Px4, where P is the number of | |
| # proposals. | |
| if 'proposals' in kwargs: | |
| kwargs['proposals'] = kwargs['proposals'][0] | |
| return self.simple_test(imgs[0], img_metas[0], **kwargs) | |
| else: | |
| assert imgs[0].size(0) == 1, 'aug test does not support ' \ | |
| 'inference with batch size ' \ | |
| f'{imgs[0].size(0)}' | |
| # TODO: support test augmentation for predefined proposals | |
| assert 'proposals' not in kwargs | |
| return self.aug_test(imgs, img_metas, **kwargs) | |
| def forward(self, img, img_metas, return_loss=True, **kwargs): | |
| """Calls either :func:`forward_train` or :func:`forward_test` depending | |
| on whether ``return_loss`` is ``True``. | |
| Note this setting will change the expected inputs. When | |
| ``return_loss=True``, img and img_meta are single-nested (i.e. Tensor | |
| and List[dict]), and when ``resturn_loss=False``, img and img_meta | |
| should be double nested (i.e. List[Tensor], List[List[dict]]), with | |
| the outer list indicating test time augmentations. | |
| """ | |
| if return_loss: | |
| return self.forward_train(img, img_metas, **kwargs) | |
| else: | |
| return self.forward_test(img, img_metas, **kwargs) | |
| def _parse_losses(self, losses): | |
| """Parse the raw outputs (losses) of the network. | |
| Args: | |
| losses (dict): Raw output of the network, which usually contain | |
| losses and other necessary infomation. | |
| Returns: | |
| tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor \ | |
| which may be a weighted sum of all losses, log_vars contains \ | |
| all the variables to be sent to the logger. | |
| """ | |
| log_vars = OrderedDict() | |
| for loss_name, loss_value in losses.items(): | |
| if isinstance(loss_value, torch.Tensor): | |
| log_vars[loss_name] = loss_value.mean() | |
| elif isinstance(loss_value, list): | |
| log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) | |
| else: | |
| raise TypeError( | |
| f'{loss_name} is not a tensor or list of tensors') | |
| loss = sum(_value for _key, _value in log_vars.items() | |
| if 'loss' in _key) | |
| log_vars['loss'] = loss | |
| for loss_name, loss_value in log_vars.items(): | |
| # reduce loss when distributed training | |
| if dist.is_available() and dist.is_initialized(): | |
| loss_value = loss_value.data.clone() | |
| dist.all_reduce(loss_value.div_(dist.get_world_size())) | |
| log_vars[loss_name] = loss_value.item() | |
| return loss, log_vars | |
| def train_step(self, data, optimizer): | |
| """The iteration step during training. | |
| This method defines an iteration step during training, except for the | |
| back propagation and optimizer updating, which are done in an optimizer | |
| hook. Note that in some complicated cases or models, the whole process | |
| including back propagation and optimizer updating is also defined in | |
| this method, such as GAN. | |
| Args: | |
| data (dict): The output of dataloader. | |
| optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of | |
| runner is passed to ``train_step()``. This argument is unused | |
| and reserved. | |
| Returns: | |
| dict: It should contain at least 3 keys: ``loss``, ``log_vars``, \ | |
| ``num_samples``. | |
| - ``loss`` is a tensor for back propagation, which can be a \ | |
| weighted sum of multiple losses. | |
| - ``log_vars`` contains all the variables to be sent to the | |
| logger. | |
| - ``num_samples`` indicates the batch size (when the model is \ | |
| DDP, it means the batch size on each GPU), which is used for \ | |
| averaging the logs. | |
| """ | |
| losses = self(**data) | |
| loss, log_vars = self._parse_losses(losses) | |
| outputs = dict( | |
| loss=loss, log_vars=log_vars, num_samples=len(data['img_metas'])) | |
| return outputs | |
| def val_step(self, data, optimizer): | |
| """The iteration step during validation. | |
| This method shares the same signature as :func:`train_step`, but used | |
| during val epochs. Note that the evaluation after training epochs is | |
| not implemented with this method, but an evaluation hook. | |
| """ | |
| losses = self(**data) | |
| loss, log_vars = self._parse_losses(losses) | |
| outputs = dict( | |
| loss=loss, log_vars=log_vars, num_samples=len(data['img_metas'])) | |
| return outputs | |
| def show_result(self, | |
| img, | |
| result, | |
| score_thr=0.3, | |
| bbox_color=(72, 101, 241), | |
| text_color=(72, 101, 241), | |
| mask_color=None, | |
| thickness=2, | |
| font_size=13, | |
| win_name='', | |
| show=False, | |
| wait_time=0, | |
| out_file=None): | |
| """Draw `result` over `img`. | |
| Args: | |
| img (str or Tensor): The image to be displayed. | |
| result (Tensor or tuple): The results to draw over `img` | |
| bbox_result or (bbox_result, segm_result). | |
| score_thr (float, optional): Minimum score of bboxes to be shown. | |
| Default: 0.3. | |
| bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines. | |
| The tuple of color should be in BGR order. Default: 'green' | |
| text_color (str or tuple(int) or :obj:`Color`):Color of texts. | |
| The tuple of color should be in BGR order. Default: 'green' | |
| mask_color (None or str or tuple(int) or :obj:`Color`): | |
| Color of masks. The tuple of color should be in BGR order. | |
| Default: None | |
| thickness (int): Thickness of lines. Default: 2 | |
| font_size (int): Font size of texts. Default: 13 | |
| win_name (str): The window name. Default: '' | |
| wait_time (float): Value of waitKey param. | |
| Default: 0. | |
| show (bool): Whether to show the image. | |
| Default: False. | |
| out_file (str or None): The filename to write the image. | |
| Default: None. | |
| Returns: | |
| img (Tensor): Only if not `show` or `out_file` | |
| """ | |
| img = mmcv.imread(img) | |
| img = img.copy() | |
| if isinstance(result, tuple): | |
| bbox_result, segm_result = result | |
| if isinstance(segm_result, tuple): | |
| segm_result = segm_result[0] # ms rcnn | |
| else: | |
| bbox_result, segm_result = result, None | |
| bboxes = np.vstack(bbox_result) | |
| labels = [ | |
| np.full(bbox.shape[0], i, dtype=np.int32) | |
| for i, bbox in enumerate(bbox_result) | |
| ] | |
| labels = np.concatenate(labels) | |
| # draw segmentation masks | |
| segms = None | |
| if segm_result is not None and len(labels) > 0: # non empty | |
| segms = mmcv.concat_list(segm_result) | |
| if isinstance(segms[0], torch.Tensor): | |
| segms = torch.stack(segms, dim=0).detach().cpu().numpy() | |
| else: | |
| segms = np.stack(segms, axis=0) | |
| # if out_file specified, do not show image in window | |
| if out_file is not None: | |
| show = False | |
| # draw bounding boxes | |
| img = imshow_det_bboxes( | |
| img, | |
| bboxes, | |
| labels, | |
| segms, | |
| class_names=self.CLASSES, | |
| score_thr=score_thr, | |
| bbox_color=bbox_color, | |
| text_color=text_color, | |
| mask_color=mask_color, | |
| thickness=thickness, | |
| font_size=font_size, | |
| win_name=win_name, | |
| show=show, | |
| wait_time=wait_time, | |
| out_file=out_file) | |
| if not (show or out_file): | |
| return img | |