Spaces:
Runtime error
Runtime error
| import math | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint as cp | |
| from mmcv.cnn import build_conv_layer, build_norm_layer | |
| from ..builder import BACKBONES | |
| from ..utils import ResLayer | |
| from .resnet import Bottleneck as _Bottleneck | |
| from .resnet import ResNetV1d | |
| class RSoftmax(nn.Module): | |
| """Radix Softmax module in ``SplitAttentionConv2d``. | |
| Args: | |
| radix (int): Radix of input. | |
| groups (int): Groups of input. | |
| """ | |
| def __init__(self, radix, groups): | |
| super().__init__() | |
| self.radix = radix | |
| self.groups = groups | |
| def forward(self, x): | |
| batch = x.size(0) | |
| if self.radix > 1: | |
| x = x.view(batch, self.groups, self.radix, -1).transpose(1, 2) | |
| x = F.softmax(x, dim=1) | |
| x = x.reshape(batch, -1) | |
| else: | |
| x = torch.sigmoid(x) | |
| return x | |
| class SplitAttentionConv2d(nn.Module): | |
| """Split-Attention Conv2d in ResNeSt. | |
| Args: | |
| in_channels (int): Number of channels in the input feature map. | |
| channels (int): Number of intermediate channels. | |
| kernel_size (int | tuple[int]): Size of the convolution kernel. | |
| stride (int | tuple[int]): Stride of the convolution. | |
| padding (int | tuple[int]): Zero-padding added to both sides of | |
| dilation (int | tuple[int]): Spacing between kernel elements. | |
| groups (int): Number of blocked connections from input channels to | |
| output channels. | |
| groups (int): Same as nn.Conv2d. | |
| radix (int): Radix of SpltAtConv2d. Default: 2 | |
| reduction_factor (int): Reduction factor of inter_channels. Default: 4. | |
| conv_cfg (dict): Config dict for convolution layer. Default: None, | |
| which means using conv2d. | |
| norm_cfg (dict): Config dict for normalization layer. Default: None. | |
| dcn (dict): Config dict for DCN. Default: None. | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| channels, | |
| kernel_size, | |
| stride=1, | |
| padding=0, | |
| dilation=1, | |
| groups=1, | |
| radix=2, | |
| reduction_factor=4, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| dcn=None): | |
| super(SplitAttentionConv2d, self).__init__() | |
| inter_channels = max(in_channels * radix // reduction_factor, 32) | |
| self.radix = radix | |
| self.groups = groups | |
| self.channels = channels | |
| self.with_dcn = dcn is not None | |
| self.dcn = dcn | |
| fallback_on_stride = False | |
| if self.with_dcn: | |
| fallback_on_stride = self.dcn.pop('fallback_on_stride', False) | |
| if self.with_dcn and not fallback_on_stride: | |
| assert conv_cfg is None, 'conv_cfg must be None for DCN' | |
| conv_cfg = dcn | |
| self.conv = build_conv_layer( | |
| conv_cfg, | |
| in_channels, | |
| channels * radix, | |
| kernel_size, | |
| stride=stride, | |
| padding=padding, | |
| dilation=dilation, | |
| groups=groups * radix, | |
| bias=False) | |
| # To be consistent with original implementation, starting from 0 | |
| self.norm0_name, norm0 = build_norm_layer( | |
| norm_cfg, channels * radix, postfix=0) | |
| self.add_module(self.norm0_name, norm0) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.fc1 = build_conv_layer( | |
| None, channels, inter_channels, 1, groups=self.groups) | |
| self.norm1_name, norm1 = build_norm_layer( | |
| norm_cfg, inter_channels, postfix=1) | |
| self.add_module(self.norm1_name, norm1) | |
| self.fc2 = build_conv_layer( | |
| None, inter_channels, channels * radix, 1, groups=self.groups) | |
| self.rsoftmax = RSoftmax(radix, groups) | |
| def norm0(self): | |
| """nn.Module: the normalization layer named "norm0" """ | |
| return getattr(self, self.norm0_name) | |
| def norm1(self): | |
| """nn.Module: the normalization layer named "norm1" """ | |
| return getattr(self, self.norm1_name) | |
| def forward(self, x): | |
| x = self.conv(x) | |
| x = self.norm0(x) | |
| x = self.relu(x) | |
| batch, rchannel = x.shape[:2] | |
| batch = x.size(0) | |
| if self.radix > 1: | |
| splits = x.view(batch, self.radix, -1, *x.shape[2:]) | |
| gap = splits.sum(dim=1) | |
| else: | |
| gap = x | |
| gap = F.adaptive_avg_pool2d(gap, 1) | |
| gap = self.fc1(gap) | |
| gap = self.norm1(gap) | |
| gap = self.relu(gap) | |
| atten = self.fc2(gap) | |
| atten = self.rsoftmax(atten).view(batch, -1, 1, 1) | |
| if self.radix > 1: | |
| attens = atten.view(batch, self.radix, -1, *atten.shape[2:]) | |
| out = torch.sum(attens * splits, dim=1) | |
| else: | |
| out = atten * x | |
| return out.contiguous() | |
| class Bottleneck(_Bottleneck): | |
| """Bottleneck block for ResNeSt. | |
| Args: | |
| inplane (int): Input planes of this block. | |
| planes (int): Middle planes of this block. | |
| groups (int): Groups of conv2. | |
| base_width (int): Base of width in terms of base channels. Default: 4. | |
| base_channels (int): Base of channels for calculating width. | |
| Default: 64. | |
| radix (int): Radix of SpltAtConv2d. Default: 2 | |
| reduction_factor (int): Reduction factor of inter_channels in | |
| SplitAttentionConv2d. Default: 4. | |
| avg_down_stride (bool): Whether to use average pool for stride in | |
| Bottleneck. Default: True. | |
| kwargs (dict): Key word arguments for base class. | |
| """ | |
| expansion = 4 | |
| def __init__(self, | |
| inplanes, | |
| planes, | |
| groups=1, | |
| base_width=4, | |
| base_channels=64, | |
| radix=2, | |
| reduction_factor=4, | |
| avg_down_stride=True, | |
| **kwargs): | |
| """Bottleneck block for ResNeSt.""" | |
| super(Bottleneck, self).__init__(inplanes, planes, **kwargs) | |
| if groups == 1: | |
| width = self.planes | |
| else: | |
| width = math.floor(self.planes * | |
| (base_width / base_channels)) * groups | |
| self.avg_down_stride = avg_down_stride and self.conv2_stride > 1 | |
| self.norm1_name, norm1 = build_norm_layer( | |
| self.norm_cfg, width, postfix=1) | |
| self.norm3_name, norm3 = build_norm_layer( | |
| self.norm_cfg, self.planes * self.expansion, postfix=3) | |
| self.conv1 = build_conv_layer( | |
| self.conv_cfg, | |
| self.inplanes, | |
| width, | |
| kernel_size=1, | |
| stride=self.conv1_stride, | |
| bias=False) | |
| self.add_module(self.norm1_name, norm1) | |
| self.with_modulated_dcn = False | |
| self.conv2 = SplitAttentionConv2d( | |
| width, | |
| width, | |
| kernel_size=3, | |
| stride=1 if self.avg_down_stride else self.conv2_stride, | |
| padding=self.dilation, | |
| dilation=self.dilation, | |
| groups=groups, | |
| radix=radix, | |
| reduction_factor=reduction_factor, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| dcn=self.dcn) | |
| delattr(self, self.norm2_name) | |
| if self.avg_down_stride: | |
| self.avd_layer = nn.AvgPool2d(3, self.conv2_stride, padding=1) | |
| self.conv3 = build_conv_layer( | |
| self.conv_cfg, | |
| width, | |
| self.planes * self.expansion, | |
| kernel_size=1, | |
| bias=False) | |
| self.add_module(self.norm3_name, norm3) | |
| def forward(self, x): | |
| def _inner_forward(x): | |
| identity = x | |
| out = self.conv1(x) | |
| out = self.norm1(out) | |
| out = self.relu(out) | |
| if self.with_plugins: | |
| out = self.forward_plugin(out, self.after_conv1_plugin_names) | |
| out = self.conv2(out) | |
| if self.avg_down_stride: | |
| out = self.avd_layer(out) | |
| if self.with_plugins: | |
| out = self.forward_plugin(out, self.after_conv2_plugin_names) | |
| out = self.conv3(out) | |
| out = self.norm3(out) | |
| if self.with_plugins: | |
| out = self.forward_plugin(out, self.after_conv3_plugin_names) | |
| if self.downsample is not None: | |
| identity = self.downsample(x) | |
| out += identity | |
| return out | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| out = self.relu(out) | |
| return out | |
| class ResNeSt(ResNetV1d): | |
| """ResNeSt backbone. | |
| Args: | |
| groups (int): Number of groups of Bottleneck. Default: 1 | |
| base_width (int): Base width of Bottleneck. Default: 4 | |
| radix (int): Radix of SplitAttentionConv2d. Default: 2 | |
| reduction_factor (int): Reduction factor of inter_channels in | |
| SplitAttentionConv2d. Default: 4. | |
| avg_down_stride (bool): Whether to use average pool for stride in | |
| Bottleneck. Default: True. | |
| kwargs (dict): Keyword arguments for ResNet. | |
| """ | |
| arch_settings = { | |
| 50: (Bottleneck, (3, 4, 6, 3)), | |
| 101: (Bottleneck, (3, 4, 23, 3)), | |
| 152: (Bottleneck, (3, 8, 36, 3)), | |
| 200: (Bottleneck, (3, 24, 36, 3)) | |
| } | |
| def __init__(self, | |
| groups=1, | |
| base_width=4, | |
| radix=2, | |
| reduction_factor=4, | |
| avg_down_stride=True, | |
| **kwargs): | |
| self.groups = groups | |
| self.base_width = base_width | |
| self.radix = radix | |
| self.reduction_factor = reduction_factor | |
| self.avg_down_stride = avg_down_stride | |
| super(ResNeSt, self).__init__(**kwargs) | |
| def make_res_layer(self, **kwargs): | |
| """Pack all blocks in a stage into a ``ResLayer``.""" | |
| return ResLayer( | |
| groups=self.groups, | |
| base_width=self.base_width, | |
| base_channels=self.base_channels, | |
| radix=self.radix, | |
| reduction_factor=self.reduction_factor, | |
| avg_down_stride=self.avg_down_stride, | |
| **kwargs) | |