Spaces:
Runtime error
Runtime error
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from mmcv.cnn import ConvModule | |
| from mmcv.runner import auto_fp16 | |
| from ..builder import NECKS | |
| from .fpn import FPN | |
| class PAFPN(FPN): | |
| """Path Aggregation Network for Instance Segmentation. | |
| This is an implementation of the `PAFPN in Path Aggregation Network | |
| <https://arxiv.org/abs/1803.01534>`_. | |
| Args: | |
| in_channels (List[int]): Number of input channels per scale. | |
| out_channels (int): Number of output channels (used at each scale) | |
| num_outs (int): Number of output scales. | |
| start_level (int): Index of the start input backbone level used to | |
| build the feature pyramid. Default: 0. | |
| end_level (int): Index of the end input backbone level (exclusive) to | |
| build the feature pyramid. Default: -1, which means the last level. | |
| add_extra_convs (bool): Whether to add conv layers on top of the | |
| original feature maps. Default: False. | |
| extra_convs_on_inputs (bool): Whether to apply extra conv on | |
| the original feature from the backbone. Default: False. | |
| relu_before_extra_convs (bool): Whether to apply relu before the extra | |
| conv. Default: False. | |
| no_norm_on_lateral (bool): Whether to apply norm on lateral. | |
| Default: False. | |
| conv_cfg (dict): Config dict for convolution layer. Default: None. | |
| norm_cfg (dict): Config dict for normalization layer. Default: None. | |
| act_cfg (str): Config dict for activation layer in ConvModule. | |
| Default: None. | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| num_outs, | |
| start_level=0, | |
| end_level=-1, | |
| add_extra_convs=False, | |
| extra_convs_on_inputs=True, | |
| relu_before_extra_convs=False, | |
| no_norm_on_lateral=False, | |
| conv_cfg=None, | |
| norm_cfg=None, | |
| act_cfg=None): | |
| super(PAFPN, | |
| self).__init__(in_channels, out_channels, num_outs, start_level, | |
| end_level, add_extra_convs, extra_convs_on_inputs, | |
| relu_before_extra_convs, no_norm_on_lateral, | |
| conv_cfg, norm_cfg, act_cfg) | |
| # add extra bottom up pathway | |
| self.downsample_convs = nn.ModuleList() | |
| self.pafpn_convs = nn.ModuleList() | |
| for i in range(self.start_level + 1, self.backbone_end_level): | |
| d_conv = ConvModule( | |
| out_channels, | |
| out_channels, | |
| 3, | |
| stride=2, | |
| padding=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg, | |
| inplace=False) | |
| pafpn_conv = ConvModule( | |
| out_channels, | |
| out_channels, | |
| 3, | |
| padding=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg, | |
| inplace=False) | |
| self.downsample_convs.append(d_conv) | |
| self.pafpn_convs.append(pafpn_conv) | |
| def forward(self, inputs): | |
| """Forward function.""" | |
| assert len(inputs) == len(self.in_channels) | |
| # build laterals | |
| laterals = [ | |
| lateral_conv(inputs[i + self.start_level]) | |
| for i, lateral_conv in enumerate(self.lateral_convs) | |
| ] | |
| # build top-down path | |
| used_backbone_levels = len(laterals) | |
| for i in range(used_backbone_levels - 1, 0, -1): | |
| prev_shape = laterals[i - 1].shape[2:] | |
| laterals[i - 1] += F.interpolate( | |
| laterals[i], size=prev_shape, mode='nearest') | |
| # build outputs | |
| # part 1: from original levels | |
| inter_outs = [ | |
| self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels) | |
| ] | |
| # part 2: add bottom-up path | |
| for i in range(0, used_backbone_levels - 1): | |
| inter_outs[i + 1] += self.downsample_convs[i](inter_outs[i]) | |
| outs = [] | |
| outs.append(inter_outs[0]) | |
| outs.extend([ | |
| self.pafpn_convs[i - 1](inter_outs[i]) | |
| for i in range(1, used_backbone_levels) | |
| ]) | |
| # part 3: add extra levels | |
| if self.num_outs > len(outs): | |
| # use max pool to get more levels on top of outputs | |
| # (e.g., Faster R-CNN, Mask R-CNN) | |
| if not self.add_extra_convs: | |
| for i in range(self.num_outs - used_backbone_levels): | |
| outs.append(F.max_pool2d(outs[-1], 1, stride=2)) | |
| # add conv layers on top of original feature maps (RetinaNet) | |
| else: | |
| if self.add_extra_convs == 'on_input': | |
| orig = inputs[self.backbone_end_level - 1] | |
| outs.append(self.fpn_convs[used_backbone_levels](orig)) | |
| elif self.add_extra_convs == 'on_lateral': | |
| outs.append(self.fpn_convs[used_backbone_levels]( | |
| laterals[-1])) | |
| elif self.add_extra_convs == 'on_output': | |
| outs.append(self.fpn_convs[used_backbone_levels](outs[-1])) | |
| else: | |
| raise NotImplementedError | |
| for i in range(used_backbone_levels + 1, self.num_outs): | |
| if self.relu_before_extra_convs: | |
| outs.append(self.fpn_convs[i](F.relu(outs[-1]))) | |
| else: | |
| outs.append(self.fpn_convs[i](outs[-1])) | |
| return tuple(outs) | |