Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch.nn as nn | |
| from mmcv.cnn import build_conv_layer, build_norm_layer | |
| from ..builder import BACKBONES | |
| from .resnet import ResNet | |
| from .resnext import Bottleneck | |
| class RegNet(ResNet): | |
| """RegNet backbone. | |
| More details can be found in `paper <https://arxiv.org/abs/2003.13678>`_ . | |
| Args: | |
| arch (dict): The parameter of RegNets. | |
| - w0 (int): initial width | |
| - wa (float): slope of width | |
| - wm (float): quantization parameter to quantize the width | |
| - depth (int): depth of the backbone | |
| - group_w (int): width of group | |
| - bot_mul (float): bottleneck ratio, i.e. expansion of bottleneck. | |
| strides (Sequence[int]): Strides of the first block of each stage. | |
| base_channels (int): Base channels after stem layer. | |
| in_channels (int): Number of input image channels. Default: 3. | |
| dilations (Sequence[int]): Dilation of each stage. | |
| out_indices (Sequence[int]): Output from which stages. | |
| style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two | |
| layer is the 3x3 conv layer, otherwise the stride-two layer is | |
| the first 1x1 conv layer. | |
| frozen_stages (int): Stages to be frozen (all param fixed). -1 means | |
| not freezing any parameters. | |
| norm_cfg (dict): dictionary to construct and config norm layer. | |
| norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
| freeze running stats (mean and var). Note: Effect on Batch Norm | |
| and its variants only. | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. | |
| zero_init_residual (bool): whether to use zero init for last norm layer | |
| in resblocks to let them behave as identity. | |
| Example: | |
| >>> from mmdet.models import RegNet | |
| >>> import torch | |
| >>> self = RegNet( | |
| arch=dict( | |
| w0=88, | |
| wa=26.31, | |
| wm=2.25, | |
| group_w=48, | |
| depth=25, | |
| bot_mul=1.0)) | |
| >>> self.eval() | |
| >>> inputs = torch.rand(1, 3, 32, 32) | |
| >>> level_outputs = self.forward(inputs) | |
| >>> for level_out in level_outputs: | |
| ... print(tuple(level_out.shape)) | |
| (1, 96, 8, 8) | |
| (1, 192, 4, 4) | |
| (1, 432, 2, 2) | |
| (1, 1008, 1, 1) | |
| """ | |
| arch_settings = { | |
| 'regnetx_400mf': | |
| dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), | |
| 'regnetx_800mf': | |
| dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16, bot_mul=1.0), | |
| 'regnetx_1.6gf': | |
| dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18, bot_mul=1.0), | |
| 'regnetx_3.2gf': | |
| dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0), | |
| 'regnetx_4.0gf': | |
| dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23, bot_mul=1.0), | |
| 'regnetx_6.4gf': | |
| dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17, bot_mul=1.0), | |
| 'regnetx_8.0gf': | |
| dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23, bot_mul=1.0), | |
| 'regnetx_12gf': | |
| dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, bot_mul=1.0), | |
| } | |
| def __init__(self, | |
| arch, | |
| in_channels=3, | |
| stem_channels=32, | |
| base_channels=32, | |
| strides=(2, 2, 2, 2), | |
| dilations=(1, 1, 1, 1), | |
| out_indices=(0, 1, 2, 3), | |
| style='pytorch', | |
| deep_stem=False, | |
| avg_down=False, | |
| frozen_stages=-1, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN', requires_grad=True), | |
| norm_eval=True, | |
| dcn=None, | |
| stage_with_dcn=(False, False, False, False), | |
| plugins=None, | |
| with_cp=False, | |
| zero_init_residual=True): | |
| super(ResNet, self).__init__() | |
| # Generate RegNet parameters first | |
| if isinstance(arch, str): | |
| assert arch in self.arch_settings, \ | |
| f'"arch": "{arch}" is not one of the' \ | |
| ' arch_settings' | |
| arch = self.arch_settings[arch] | |
| elif not isinstance(arch, dict): | |
| raise ValueError('Expect "arch" to be either a string ' | |
| f'or a dict, got {type(arch)}') | |
| widths, num_stages = self.generate_regnet( | |
| arch['w0'], | |
| arch['wa'], | |
| arch['wm'], | |
| arch['depth'], | |
| ) | |
| # Convert to per stage format | |
| stage_widths, stage_blocks = self.get_stages_from_blocks(widths) | |
| # Generate group widths and bot muls | |
| group_widths = [arch['group_w'] for _ in range(num_stages)] | |
| self.bottleneck_ratio = [arch['bot_mul'] for _ in range(num_stages)] | |
| # Adjust the compatibility of stage_widths and group_widths | |
| stage_widths, group_widths = self.adjust_width_group( | |
| stage_widths, self.bottleneck_ratio, group_widths) | |
| # Group params by stage | |
| self.stage_widths = stage_widths | |
| self.group_widths = group_widths | |
| self.depth = sum(stage_blocks) | |
| self.stem_channels = stem_channels | |
| self.base_channels = base_channels | |
| self.num_stages = num_stages | |
| assert num_stages >= 1 and num_stages <= 4 | |
| self.strides = strides | |
| self.dilations = dilations | |
| assert len(strides) == len(dilations) == num_stages | |
| self.out_indices = out_indices | |
| assert max(out_indices) < num_stages | |
| self.style = style | |
| self.deep_stem = deep_stem | |
| self.avg_down = avg_down | |
| self.frozen_stages = frozen_stages | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| self.with_cp = with_cp | |
| self.norm_eval = norm_eval | |
| self.dcn = dcn | |
| self.stage_with_dcn = stage_with_dcn | |
| if dcn is not None: | |
| assert len(stage_with_dcn) == num_stages | |
| self.plugins = plugins | |
| self.zero_init_residual = zero_init_residual | |
| self.block = Bottleneck | |
| expansion_bak = self.block.expansion | |
| self.block.expansion = 1 | |
| self.stage_blocks = stage_blocks[:num_stages] | |
| self._make_stem_layer(in_channels, stem_channels) | |
| self.inplanes = stem_channels | |
| self.res_layers = [] | |
| for i, num_blocks in enumerate(self.stage_blocks): | |
| stride = self.strides[i] | |
| dilation = self.dilations[i] | |
| group_width = self.group_widths[i] | |
| width = int(round(self.stage_widths[i] * self.bottleneck_ratio[i])) | |
| stage_groups = width // group_width | |
| dcn = self.dcn if self.stage_with_dcn[i] else None | |
| if self.plugins is not None: | |
| stage_plugins = self.make_stage_plugins(self.plugins, i) | |
| else: | |
| stage_plugins = None | |
| res_layer = self.make_res_layer( | |
| block=self.block, | |
| inplanes=self.inplanes, | |
| planes=self.stage_widths[i], | |
| num_blocks=num_blocks, | |
| stride=stride, | |
| dilation=dilation, | |
| style=self.style, | |
| avg_down=self.avg_down, | |
| with_cp=self.with_cp, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| dcn=dcn, | |
| plugins=stage_plugins, | |
| groups=stage_groups, | |
| base_width=group_width, | |
| base_channels=self.stage_widths[i]) | |
| self.inplanes = self.stage_widths[i] | |
| layer_name = f'layer{i + 1}' | |
| self.add_module(layer_name, res_layer) | |
| self.res_layers.append(layer_name) | |
| self._freeze_stages() | |
| self.feat_dim = stage_widths[-1] | |
| self.block.expansion = expansion_bak | |
| def _make_stem_layer(self, in_channels, base_channels): | |
| self.conv1 = build_conv_layer( | |
| self.conv_cfg, | |
| in_channels, | |
| base_channels, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| bias=False) | |
| self.norm1_name, norm1 = build_norm_layer( | |
| self.norm_cfg, base_channels, postfix=1) | |
| self.add_module(self.norm1_name, norm1) | |
| self.relu = nn.ReLU(inplace=True) | |
| def generate_regnet(self, | |
| initial_width, | |
| width_slope, | |
| width_parameter, | |
| depth, | |
| divisor=8): | |
| """Generates per block width from RegNet parameters. | |
| Args: | |
| initial_width ([int]): Initial width of the backbone | |
| width_slope ([float]): Slope of the quantized linear function | |
| width_parameter ([int]): Parameter used to quantize the width. | |
| depth ([int]): Depth of the backbone. | |
| divisor (int, optional): The divisor of channels. Defaults to 8. | |
| Returns: | |
| list, int: return a list of widths of each stage and the number \ | |
| of stages | |
| """ | |
| assert width_slope >= 0 | |
| assert initial_width > 0 | |
| assert width_parameter > 1 | |
| assert initial_width % divisor == 0 | |
| widths_cont = np.arange(depth) * width_slope + initial_width | |
| ks = np.round( | |
| np.log(widths_cont / initial_width) / np.log(width_parameter)) | |
| widths = initial_width * np.power(width_parameter, ks) | |
| widths = np.round(np.divide(widths, divisor)) * divisor | |
| num_stages = len(np.unique(widths)) | |
| widths, widths_cont = widths.astype(int).tolist(), widths_cont.tolist() | |
| return widths, num_stages | |
| def quantize_float(number, divisor): | |
| """Converts a float to closest non-zero int divisible by divisor. | |
| Args: | |
| number (int): Original number to be quantized. | |
| divisor (int): Divisor used to quantize the number. | |
| Returns: | |
| int: quantized number that is divisible by devisor. | |
| """ | |
| return int(round(number / divisor) * divisor) | |
| def adjust_width_group(self, widths, bottleneck_ratio, groups): | |
| """Adjusts the compatibility of widths and groups. | |
| Args: | |
| widths (list[int]): Width of each stage. | |
| bottleneck_ratio (float): Bottleneck ratio. | |
| groups (int): number of groups in each stage | |
| Returns: | |
| tuple(list): The adjusted widths and groups of each stage. | |
| """ | |
| bottleneck_width = [ | |
| int(w * b) for w, b in zip(widths, bottleneck_ratio) | |
| ] | |
| groups = [min(g, w_bot) for g, w_bot in zip(groups, bottleneck_width)] | |
| bottleneck_width = [ | |
| self.quantize_float(w_bot, g) | |
| for w_bot, g in zip(bottleneck_width, groups) | |
| ] | |
| widths = [ | |
| int(w_bot / b) | |
| for w_bot, b in zip(bottleneck_width, bottleneck_ratio) | |
| ] | |
| return widths, groups | |
| def get_stages_from_blocks(self, widths): | |
| """Gets widths/stage_blocks of network at each stage. | |
| Args: | |
| widths (list[int]): Width in each stage. | |
| Returns: | |
| tuple(list): width and depth of each stage | |
| """ | |
| width_diff = [ | |
| width != width_prev | |
| for width, width_prev in zip(widths + [0], [0] + widths) | |
| ] | |
| stage_widths = [ | |
| width for width, diff in zip(widths, width_diff[:-1]) if diff | |
| ] | |
| stage_blocks = np.diff([ | |
| depth for depth, diff in zip(range(len(width_diff)), width_diff) | |
| if diff | |
| ]).tolist() | |
| return stage_widths, stage_blocks | |
| def forward(self, x): | |
| """Forward function.""" | |
| x = self.conv1(x) | |
| x = self.norm1(x) | |
| x = self.relu(x) | |
| outs = [] | |
| for i, layer_name in enumerate(self.res_layers): | |
| res_layer = getattr(self, layer_name) | |
| x = res_layer(x) | |
| if i in self.out_indices: | |
| outs.append(x) | |
| return tuple(outs) | |