Spaces:
Runtime error
Runtime error
| # Copyright (c) Open-MMLab. All rights reserved. | |
| import io | |
| import os | |
| import os.path as osp | |
| import pkgutil | |
| import time | |
| import warnings | |
| from collections import OrderedDict | |
| from importlib import import_module | |
| from tempfile import TemporaryDirectory | |
| import torch | |
| import torchvision | |
| from torch.optim import Optimizer | |
| from torch.utils import model_zoo | |
| from torch.nn import functional as F | |
| import annotator.uniformer.mmcv as mmcv | |
| from annotator.uniformer.mmcv.fileio import FileClient | |
| from annotator.uniformer.mmcv.fileio import load as load_file | |
| from annotator.uniformer.mmcv.parallel import is_module_wrapper | |
| from annotator.uniformer.mmcv.utils import mkdir_or_exist | |
| from annotator.uniformer.mmcv.runner import get_dist_info | |
| ENV_MMCV_HOME = 'MMCV_HOME' | |
| ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME' | |
| DEFAULT_CACHE_DIR = '~/.cache' | |
| def _get_mmcv_home(): | |
| mmcv_home = os.path.expanduser( | |
| os.getenv( | |
| ENV_MMCV_HOME, | |
| os.path.join( | |
| os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv'))) | |
| mkdir_or_exist(mmcv_home) | |
| return mmcv_home | |
| def load_state_dict(module, state_dict, strict=False, logger=None): | |
| """Load state_dict to a module. | |
| This method is modified from :meth:`torch.nn.Module.load_state_dict`. | |
| Default value for ``strict`` is set to ``False`` and the message for | |
| param mismatch will be shown even if strict is False. | |
| Args: | |
| module (Module): Module that receives the state_dict. | |
| state_dict (OrderedDict): Weights. | |
| strict (bool): whether to strictly enforce that the keys | |
| in :attr:`state_dict` match the keys returned by this module's | |
| :meth:`~torch.nn.Module.state_dict` function. Default: ``False``. | |
| logger (:obj:`logging.Logger`, optional): Logger to log the error | |
| message. If not specified, print function will be used. | |
| """ | |
| unexpected_keys = [] | |
| all_missing_keys = [] | |
| err_msg = [] | |
| metadata = getattr(state_dict, '_metadata', None) | |
| state_dict = state_dict.copy() | |
| if metadata is not None: | |
| state_dict._metadata = metadata | |
| # use _load_from_state_dict to enable checkpoint version control | |
| def load(module, prefix=''): | |
| # recursively check parallel module in case that the model has a | |
| # complicated structure, e.g., nn.Module(nn.Module(DDP)) | |
| if is_module_wrapper(module): | |
| module = module.module | |
| local_metadata = {} if metadata is None else metadata.get( | |
| prefix[:-1], {}) | |
| module._load_from_state_dict(state_dict, prefix, local_metadata, True, | |
| all_missing_keys, unexpected_keys, | |
| err_msg) | |
| for name, child in module._modules.items(): | |
| if child is not None: | |
| load(child, prefix + name + '.') | |
| load(module) | |
| load = None # break load->load reference cycle | |
| # ignore "num_batches_tracked" of BN layers | |
| missing_keys = [ | |
| key for key in all_missing_keys if 'num_batches_tracked' not in key | |
| ] | |
| if unexpected_keys: | |
| err_msg.append('unexpected key in source ' | |
| f'state_dict: {", ".join(unexpected_keys)}\n') | |
| if missing_keys: | |
| err_msg.append( | |
| f'missing keys in source state_dict: {", ".join(missing_keys)}\n') | |
| rank, _ = get_dist_info() | |
| if len(err_msg) > 0 and rank == 0: | |
| err_msg.insert( | |
| 0, 'The model and loaded state dict do not match exactly\n') | |
| err_msg = '\n'.join(err_msg) | |
| if strict: | |
| raise RuntimeError(err_msg) | |
| elif logger is not None: | |
| logger.warning(err_msg) | |
| else: | |
| print(err_msg) | |
| def load_url_dist(url, model_dir=None): | |
| """In distributed setting, this function only download checkpoint at local | |
| rank 0.""" | |
| rank, world_size = get_dist_info() | |
| rank = int(os.environ.get('LOCAL_RANK', rank)) | |
| if rank == 0: | |
| checkpoint = model_zoo.load_url(url, model_dir=model_dir) | |
| if world_size > 1: | |
| torch.distributed.barrier() | |
| if rank > 0: | |
| checkpoint = model_zoo.load_url(url, model_dir=model_dir) | |
| return checkpoint | |
| def load_pavimodel_dist(model_path, map_location=None): | |
| """In distributed setting, this function only download checkpoint at local | |
| rank 0.""" | |
| try: | |
| from pavi import modelcloud | |
| except ImportError: | |
| raise ImportError( | |
| 'Please install pavi to load checkpoint from modelcloud.') | |
| rank, world_size = get_dist_info() | |
| rank = int(os.environ.get('LOCAL_RANK', rank)) | |
| if rank == 0: | |
| model = modelcloud.get(model_path) | |
| with TemporaryDirectory() as tmp_dir: | |
| downloaded_file = osp.join(tmp_dir, model.name) | |
| model.download(downloaded_file) | |
| checkpoint = torch.load(downloaded_file, map_location=map_location) | |
| if world_size > 1: | |
| torch.distributed.barrier() | |
| if rank > 0: | |
| model = modelcloud.get(model_path) | |
| with TemporaryDirectory() as tmp_dir: | |
| downloaded_file = osp.join(tmp_dir, model.name) | |
| model.download(downloaded_file) | |
| checkpoint = torch.load( | |
| downloaded_file, map_location=map_location) | |
| return checkpoint | |
| def load_fileclient_dist(filename, backend, map_location): | |
| """In distributed setting, this function only download checkpoint at local | |
| rank 0.""" | |
| rank, world_size = get_dist_info() | |
| rank = int(os.environ.get('LOCAL_RANK', rank)) | |
| allowed_backends = ['ceph'] | |
| if backend not in allowed_backends: | |
| raise ValueError(f'Load from Backend {backend} is not supported.') | |
| if rank == 0: | |
| fileclient = FileClient(backend=backend) | |
| buffer = io.BytesIO(fileclient.get(filename)) | |
| checkpoint = torch.load(buffer, map_location=map_location) | |
| if world_size > 1: | |
| torch.distributed.barrier() | |
| if rank > 0: | |
| fileclient = FileClient(backend=backend) | |
| buffer = io.BytesIO(fileclient.get(filename)) | |
| checkpoint = torch.load(buffer, map_location=map_location) | |
| return checkpoint | |
| def get_torchvision_models(): | |
| model_urls = dict() | |
| for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__): | |
| if ispkg: | |
| continue | |
| _zoo = import_module(f'torchvision.models.{name}') | |
| if hasattr(_zoo, 'model_urls'): | |
| _urls = getattr(_zoo, 'model_urls') | |
| model_urls.update(_urls) | |
| return model_urls | |
| def get_external_models(): | |
| mmcv_home = _get_mmcv_home() | |
| default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json') | |
| default_urls = load_file(default_json_path) | |
| assert isinstance(default_urls, dict) | |
| external_json_path = osp.join(mmcv_home, 'open_mmlab.json') | |
| if osp.exists(external_json_path): | |
| external_urls = load_file(external_json_path) | |
| assert isinstance(external_urls, dict) | |
| default_urls.update(external_urls) | |
| return default_urls | |
| def get_mmcls_models(): | |
| mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json') | |
| mmcls_urls = load_file(mmcls_json_path) | |
| return mmcls_urls | |
| def get_deprecated_model_names(): | |
| deprecate_json_path = osp.join(mmcv.__path__[0], | |
| 'model_zoo/deprecated.json') | |
| deprecate_urls = load_file(deprecate_json_path) | |
| assert isinstance(deprecate_urls, dict) | |
| return deprecate_urls | |
| def _process_mmcls_checkpoint(checkpoint): | |
| state_dict = checkpoint['state_dict'] | |
| new_state_dict = OrderedDict() | |
| for k, v in state_dict.items(): | |
| if k.startswith('backbone.'): | |
| new_state_dict[k[9:]] = v | |
| new_checkpoint = dict(state_dict=new_state_dict) | |
| return new_checkpoint | |
| def _load_checkpoint(filename, map_location=None): | |
| """Load checkpoint from somewhere (modelzoo, file, url). | |
| Args: | |
| filename (str): Accept local filepath, URL, ``torchvision://xxx``, | |
| ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for | |
| details. | |
| map_location (str | None): Same as :func:`torch.load`. Default: None. | |
| Returns: | |
| dict | OrderedDict: The loaded checkpoint. It can be either an | |
| OrderedDict storing model weights or a dict containing other | |
| information, which depends on the checkpoint. | |
| """ | |
| if filename.startswith('modelzoo://'): | |
| warnings.warn('The URL scheme of "modelzoo://" is deprecated, please ' | |
| 'use "torchvision://" instead') | |
| model_urls = get_torchvision_models() | |
| model_name = filename[11:] | |
| checkpoint = load_url_dist(model_urls[model_name]) | |
| elif filename.startswith('torchvision://'): | |
| model_urls = get_torchvision_models() | |
| model_name = filename[14:] | |
| checkpoint = load_url_dist(model_urls[model_name]) | |
| elif filename.startswith('open-mmlab://'): | |
| model_urls = get_external_models() | |
| model_name = filename[13:] | |
| deprecated_urls = get_deprecated_model_names() | |
| if model_name in deprecated_urls: | |
| warnings.warn(f'open-mmlab://{model_name} is deprecated in favor ' | |
| f'of open-mmlab://{deprecated_urls[model_name]}') | |
| model_name = deprecated_urls[model_name] | |
| model_url = model_urls[model_name] | |
| # check if is url | |
| if model_url.startswith(('http://', 'https://')): | |
| checkpoint = load_url_dist(model_url) | |
| else: | |
| filename = osp.join(_get_mmcv_home(), model_url) | |
| if not osp.isfile(filename): | |
| raise IOError(f'{filename} is not a checkpoint file') | |
| checkpoint = torch.load(filename, map_location=map_location) | |
| elif filename.startswith('mmcls://'): | |
| model_urls = get_mmcls_models() | |
| model_name = filename[8:] | |
| checkpoint = load_url_dist(model_urls[model_name]) | |
| checkpoint = _process_mmcls_checkpoint(checkpoint) | |
| elif filename.startswith(('http://', 'https://')): | |
| checkpoint = load_url_dist(filename) | |
| elif filename.startswith('pavi://'): | |
| model_path = filename[7:] | |
| checkpoint = load_pavimodel_dist(model_path, map_location=map_location) | |
| elif filename.startswith('s3://'): | |
| checkpoint = load_fileclient_dist( | |
| filename, backend='ceph', map_location=map_location) | |
| else: | |
| if not osp.isfile(filename): | |
| raise IOError(f'{filename} is not a checkpoint file') | |
| checkpoint = torch.load(filename, map_location=map_location) | |
| return checkpoint | |
| def load_checkpoint(model, | |
| filename, | |
| map_location='cpu', | |
| strict=False, | |
| logger=None): | |
| """Load checkpoint from a file or URI. | |
| Args: | |
| model (Module): Module to load checkpoint. | |
| filename (str): Accept local filepath, URL, ``torchvision://xxx``, | |
| ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for | |
| details. | |
| map_location (str): Same as :func:`torch.load`. | |
| strict (bool): Whether to allow different params for the model and | |
| checkpoint. | |
| logger (:mod:`logging.Logger` or None): The logger for error message. | |
| Returns: | |
| dict or OrderedDict: The loaded checkpoint. | |
| """ | |
| checkpoint = _load_checkpoint(filename, map_location) | |
| # OrderedDict is a subclass of dict | |
| if not isinstance(checkpoint, dict): | |
| raise RuntimeError( | |
| f'No state_dict found in checkpoint file {filename}') | |
| # get state_dict from checkpoint | |
| if 'state_dict' in checkpoint: | |
| state_dict = checkpoint['state_dict'] | |
| elif 'model' in checkpoint: | |
| state_dict = checkpoint['model'] | |
| else: | |
| state_dict = checkpoint | |
| # strip prefix of state_dict | |
| if list(state_dict.keys())[0].startswith('module.'): | |
| state_dict = {k[7:]: v for k, v in state_dict.items()} | |
| # for MoBY, load model of online branch | |
| if sorted(list(state_dict.keys()))[0].startswith('encoder'): | |
| state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.')} | |
| # reshape absolute position embedding | |
| if state_dict.get('absolute_pos_embed') is not None: | |
| absolute_pos_embed = state_dict['absolute_pos_embed'] | |
| N1, L, C1 = absolute_pos_embed.size() | |
| N2, C2, H, W = model.absolute_pos_embed.size() | |
| if N1 != N2 or C1 != C2 or L != H*W: | |
| logger.warning("Error in loading absolute_pos_embed, pass") | |
| else: | |
| state_dict['absolute_pos_embed'] = absolute_pos_embed.view(N2, H, W, C2).permute(0, 3, 1, 2) | |
| # interpolate position bias table if needed | |
| relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k] | |
| for table_key in relative_position_bias_table_keys: | |
| table_pretrained = state_dict[table_key] | |
| table_current = model.state_dict()[table_key] | |
| L1, nH1 = table_pretrained.size() | |
| L2, nH2 = table_current.size() | |
| if nH1 != nH2: | |
| logger.warning(f"Error in loading {table_key}, pass") | |
| else: | |
| if L1 != L2: | |
| S1 = int(L1 ** 0.5) | |
| S2 = int(L2 ** 0.5) | |
| table_pretrained_resized = F.interpolate( | |
| table_pretrained.permute(1, 0).view(1, nH1, S1, S1), | |
| size=(S2, S2), mode='bicubic') | |
| state_dict[table_key] = table_pretrained_resized.view(nH2, L2).permute(1, 0) | |
| # load state_dict | |
| load_state_dict(model, state_dict, strict, logger) | |
| return checkpoint | |
| def weights_to_cpu(state_dict): | |
| """Copy a model state_dict to cpu. | |
| Args: | |
| state_dict (OrderedDict): Model weights on GPU. | |
| Returns: | |
| OrderedDict: Model weights on GPU. | |
| """ | |
| state_dict_cpu = OrderedDict() | |
| for key, val in state_dict.items(): | |
| state_dict_cpu[key] = val.cpu() | |
| return state_dict_cpu | |
| def _save_to_state_dict(module, destination, prefix, keep_vars): | |
| """Saves module state to `destination` dictionary. | |
| This method is modified from :meth:`torch.nn.Module._save_to_state_dict`. | |
| Args: | |
| module (nn.Module): The module to generate state_dict. | |
| destination (dict): A dict where state will be stored. | |
| prefix (str): The prefix for parameters and buffers used in this | |
| module. | |
| """ | |
| for name, param in module._parameters.items(): | |
| if param is not None: | |
| destination[prefix + name] = param if keep_vars else param.detach() | |
| for name, buf in module._buffers.items(): | |
| # remove check of _non_persistent_buffers_set to allow nn.BatchNorm2d | |
| if buf is not None: | |
| destination[prefix + name] = buf if keep_vars else buf.detach() | |
| def get_state_dict(module, destination=None, prefix='', keep_vars=False): | |
| """Returns a dictionary containing a whole state of the module. | |
| Both parameters and persistent buffers (e.g. running averages) are | |
| included. Keys are corresponding parameter and buffer names. | |
| This method is modified from :meth:`torch.nn.Module.state_dict` to | |
| recursively check parallel module in case that the model has a complicated | |
| structure, e.g., nn.Module(nn.Module(DDP)). | |
| Args: | |
| module (nn.Module): The module to generate state_dict. | |
| destination (OrderedDict): Returned dict for the state of the | |
| module. | |
| prefix (str): Prefix of the key. | |
| keep_vars (bool): Whether to keep the variable property of the | |
| parameters. Default: False. | |
| Returns: | |
| dict: A dictionary containing a whole state of the module. | |
| """ | |
| # recursively check parallel module in case that the model has a | |
| # complicated structure, e.g., nn.Module(nn.Module(DDP)) | |
| if is_module_wrapper(module): | |
| module = module.module | |
| # below is the same as torch.nn.Module.state_dict() | |
| if destination is None: | |
| destination = OrderedDict() | |
| destination._metadata = OrderedDict() | |
| destination._metadata[prefix[:-1]] = local_metadata = dict( | |
| version=module._version) | |
| _save_to_state_dict(module, destination, prefix, keep_vars) | |
| for name, child in module._modules.items(): | |
| if child is not None: | |
| get_state_dict( | |
| child, destination, prefix + name + '.', keep_vars=keep_vars) | |
| for hook in module._state_dict_hooks.values(): | |
| hook_result = hook(module, destination, prefix, local_metadata) | |
| if hook_result is not None: | |
| destination = hook_result | |
| return destination | |
| def save_checkpoint(model, filename, optimizer=None, meta=None): | |
| """Save checkpoint to file. | |
| The checkpoint will have 3 fields: ``meta``, ``state_dict`` and | |
| ``optimizer``. By default ``meta`` will contain version and time info. | |
| Args: | |
| model (Module): Module whose params are to be saved. | |
| filename (str): Checkpoint filename. | |
| optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. | |
| meta (dict, optional): Metadata to be saved in checkpoint. | |
| """ | |
| if meta is None: | |
| meta = {} | |
| elif not isinstance(meta, dict): | |
| raise TypeError(f'meta must be a dict or None, but got {type(meta)}') | |
| meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) | |
| if is_module_wrapper(model): | |
| model = model.module | |
| if hasattr(model, 'CLASSES') and model.CLASSES is not None: | |
| # save class name to the meta | |
| meta.update(CLASSES=model.CLASSES) | |
| checkpoint = { | |
| 'meta': meta, | |
| 'state_dict': weights_to_cpu(get_state_dict(model)) | |
| } | |
| # save optimizer state dict in the checkpoint | |
| if isinstance(optimizer, Optimizer): | |
| checkpoint['optimizer'] = optimizer.state_dict() | |
| elif isinstance(optimizer, dict): | |
| checkpoint['optimizer'] = {} | |
| for name, optim in optimizer.items(): | |
| checkpoint['optimizer'][name] = optim.state_dict() | |
| if filename.startswith('pavi://'): | |
| try: | |
| from pavi import modelcloud | |
| from pavi.exception import NodeNotFoundError | |
| except ImportError: | |
| raise ImportError( | |
| 'Please install pavi to load checkpoint from modelcloud.') | |
| model_path = filename[7:] | |
| root = modelcloud.Folder() | |
| model_dir, model_name = osp.split(model_path) | |
| try: | |
| model = modelcloud.get(model_dir) | |
| except NodeNotFoundError: | |
| model = root.create_training_model(model_dir) | |
| with TemporaryDirectory() as tmp_dir: | |
| checkpoint_file = osp.join(tmp_dir, model_name) | |
| with open(checkpoint_file, 'wb') as f: | |
| torch.save(checkpoint, f) | |
| f.flush() | |
| model.create_file(checkpoint_file, name=model_name) | |
| else: | |
| mmcv.mkdir_or_exist(osp.dirname(filename)) | |
| # immediately flush buffer | |
| with open(filename, 'wb') as f: | |
| torch.save(checkpoint, f) | |
| f.flush() |