Spaces:
Runtime error
Runtime error
| import bisect | |
| import math | |
| from collections import defaultdict | |
| import numpy as np | |
| from mmcv.utils import print_log | |
| from torch.utils.data.dataset import ConcatDataset as _ConcatDataset | |
| from .builder import DATASETS | |
| from .coco import CocoDataset | |
| class ConcatDataset(_ConcatDataset): | |
| """A wrapper of concatenated dataset. | |
| Same as :obj:`torch.utils.data.dataset.ConcatDataset`, but | |
| concat the group flag for image aspect ratio. | |
| Args: | |
| datasets (list[:obj:`Dataset`]): A list of datasets. | |
| separate_eval (bool): Whether to evaluate the results | |
| separately if it is used as validation dataset. | |
| Defaults to True. | |
| """ | |
| def __init__(self, datasets, separate_eval=True): | |
| super(ConcatDataset, self).__init__(datasets) | |
| self.CLASSES = datasets[0].CLASSES | |
| self.separate_eval = separate_eval | |
| if not separate_eval: | |
| if any([isinstance(ds, CocoDataset) for ds in datasets]): | |
| raise NotImplementedError( | |
| 'Evaluating concatenated CocoDataset as a whole is not' | |
| ' supported! Please set "separate_eval=True"') | |
| elif len(set([type(ds) for ds in datasets])) != 1: | |
| raise NotImplementedError( | |
| 'All the datasets should have same types') | |
| if hasattr(datasets[0], 'flag'): | |
| flags = [] | |
| for i in range(0, len(datasets)): | |
| flags.append(datasets[i].flag) | |
| self.flag = np.concatenate(flags) | |
| def get_cat_ids(self, idx): | |
| """Get category ids of concatenated dataset by index. | |
| Args: | |
| idx (int): Index of data. | |
| Returns: | |
| list[int]: All categories in the image of specified index. | |
| """ | |
| if idx < 0: | |
| if -idx > len(self): | |
| raise ValueError( | |
| 'absolute value of index should not exceed dataset length') | |
| idx = len(self) + idx | |
| dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) | |
| if dataset_idx == 0: | |
| sample_idx = idx | |
| else: | |
| sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] | |
| return self.datasets[dataset_idx].get_cat_ids(sample_idx) | |
| def evaluate(self, results, logger=None, **kwargs): | |
| """Evaluate the results. | |
| Args: | |
| results (list[list | tuple]): Testing results of the dataset. | |
| logger (logging.Logger | str | None): Logger used for printing | |
| related information during evaluation. Default: None. | |
| Returns: | |
| dict[str: float]: AP results of the total dataset or each separate | |
| dataset if `self.separate_eval=True`. | |
| """ | |
| assert len(results) == self.cumulative_sizes[-1], \ | |
| ('Dataset and results have different sizes: ' | |
| f'{self.cumulative_sizes[-1]} v.s. {len(results)}') | |
| # Check whether all the datasets support evaluation | |
| for dataset in self.datasets: | |
| assert hasattr(dataset, 'evaluate'), \ | |
| f'{type(dataset)} does not implement evaluate function' | |
| if self.separate_eval: | |
| dataset_idx = -1 | |
| total_eval_results = dict() | |
| for size, dataset in zip(self.cumulative_sizes, self.datasets): | |
| start_idx = 0 if dataset_idx == -1 else \ | |
| self.cumulative_sizes[dataset_idx] | |
| end_idx = self.cumulative_sizes[dataset_idx + 1] | |
| results_per_dataset = results[start_idx:end_idx] | |
| print_log( | |
| f'\nEvaluateing {dataset.ann_file} with ' | |
| f'{len(results_per_dataset)} images now', | |
| logger=logger) | |
| eval_results_per_dataset = dataset.evaluate( | |
| results_per_dataset, logger=logger, **kwargs) | |
| dataset_idx += 1 | |
| for k, v in eval_results_per_dataset.items(): | |
| total_eval_results.update({f'{dataset_idx}_{k}': v}) | |
| return total_eval_results | |
| elif any([isinstance(ds, CocoDataset) for ds in self.datasets]): | |
| raise NotImplementedError( | |
| 'Evaluating concatenated CocoDataset as a whole is not' | |
| ' supported! Please set "separate_eval=True"') | |
| elif len(set([type(ds) for ds in self.datasets])) != 1: | |
| raise NotImplementedError( | |
| 'All the datasets should have same types') | |
| else: | |
| original_data_infos = self.datasets[0].data_infos | |
| self.datasets[0].data_infos = sum( | |
| [dataset.data_infos for dataset in self.datasets], []) | |
| eval_results = self.datasets[0].evaluate( | |
| results, logger=logger, **kwargs) | |
| self.datasets[0].data_infos = original_data_infos | |
| return eval_results | |
| class RepeatDataset(object): | |
| """A wrapper of repeated dataset. | |
| The length of repeated dataset will be `times` larger than the original | |
| dataset. This is useful when the data loading time is long but the dataset | |
| is small. Using RepeatDataset can reduce the data loading time between | |
| epochs. | |
| Args: | |
| dataset (:obj:`Dataset`): The dataset to be repeated. | |
| times (int): Repeat times. | |
| """ | |
| def __init__(self, dataset, times): | |
| self.dataset = dataset | |
| self.times = times | |
| self.CLASSES = dataset.CLASSES | |
| if hasattr(self.dataset, 'flag'): | |
| self.flag = np.tile(self.dataset.flag, times) | |
| self._ori_len = len(self.dataset) | |
| def __getitem__(self, idx): | |
| return self.dataset[idx % self._ori_len] | |
| def get_cat_ids(self, idx): | |
| """Get category ids of repeat dataset by index. | |
| Args: | |
| idx (int): Index of data. | |
| Returns: | |
| list[int]: All categories in the image of specified index. | |
| """ | |
| return self.dataset.get_cat_ids(idx % self._ori_len) | |
| def __len__(self): | |
| """Length after repetition.""" | |
| return self.times * self._ori_len | |
| # Modified from https://github.com/facebookresearch/detectron2/blob/41d475b75a230221e21d9cac5d69655e3415e3a4/detectron2/data/samplers/distributed_sampler.py#L57 # noqa | |
| class ClassBalancedDataset(object): | |
| """A wrapper of repeated dataset with repeat factor. | |
| Suitable for training on class imbalanced datasets like LVIS. Following | |
| the sampling strategy in the `paper <https://arxiv.org/abs/1908.03195>`_, | |
| in each epoch, an image may appear multiple times based on its | |
| "repeat factor". | |
| The repeat factor for an image is a function of the frequency the rarest | |
| category labeled in that image. The "frequency of category c" in [0, 1] | |
| is defined by the fraction of images in the training set (without repeats) | |
| in which category c appears. | |
| The dataset needs to instantiate :func:`self.get_cat_ids` to support | |
| ClassBalancedDataset. | |
| The repeat factor is computed as followed. | |
| 1. For each category c, compute the fraction # of images | |
| that contain it: :math:`f(c)` | |
| 2. For each category c, compute the category-level repeat factor: | |
| :math:`r(c) = max(1, sqrt(t/f(c)))` | |
| 3. For each image I, compute the image-level repeat factor: | |
| :math:`r(I) = max_{c in I} r(c)` | |
| Args: | |
| dataset (:obj:`CustomDataset`): The dataset to be repeated. | |
| oversample_thr (float): frequency threshold below which data is | |
| repeated. For categories with ``f_c >= oversample_thr``, there is | |
| no oversampling. For categories with ``f_c < oversample_thr``, the | |
| degree of oversampling following the square-root inverse frequency | |
| heuristic above. | |
| filter_empty_gt (bool, optional): If set true, images without bounding | |
| boxes will not be oversampled. Otherwise, they will be categorized | |
| as the pure background class and involved into the oversampling. | |
| Default: True. | |
| """ | |
| def __init__(self, dataset, oversample_thr, filter_empty_gt=True): | |
| self.dataset = dataset | |
| self.oversample_thr = oversample_thr | |
| self.filter_empty_gt = filter_empty_gt | |
| self.CLASSES = dataset.CLASSES | |
| repeat_factors = self._get_repeat_factors(dataset, oversample_thr) | |
| repeat_indices = [] | |
| for dataset_idx, repeat_factor in enumerate(repeat_factors): | |
| repeat_indices.extend([dataset_idx] * math.ceil(repeat_factor)) | |
| self.repeat_indices = repeat_indices | |
| flags = [] | |
| if hasattr(self.dataset, 'flag'): | |
| for flag, repeat_factor in zip(self.dataset.flag, repeat_factors): | |
| flags.extend([flag] * int(math.ceil(repeat_factor))) | |
| assert len(flags) == len(repeat_indices) | |
| self.flag = np.asarray(flags, dtype=np.uint8) | |
| def _get_repeat_factors(self, dataset, repeat_thr): | |
| """Get repeat factor for each images in the dataset. | |
| Args: | |
| dataset (:obj:`CustomDataset`): The dataset | |
| repeat_thr (float): The threshold of frequency. If an image | |
| contains the categories whose frequency below the threshold, | |
| it would be repeated. | |
| Returns: | |
| list[float]: The repeat factors for each images in the dataset. | |
| """ | |
| # 1. For each category c, compute the fraction # of images | |
| # that contain it: f(c) | |
| category_freq = defaultdict(int) | |
| num_images = len(dataset) | |
| for idx in range(num_images): | |
| cat_ids = set(self.dataset.get_cat_ids(idx)) | |
| if len(cat_ids) == 0 and not self.filter_empty_gt: | |
| cat_ids = set([len(self.CLASSES)]) | |
| for cat_id in cat_ids: | |
| category_freq[cat_id] += 1 | |
| for k, v in category_freq.items(): | |
| category_freq[k] = v / num_images | |
| # 2. For each category c, compute the category-level repeat factor: | |
| # r(c) = max(1, sqrt(t/f(c))) | |
| category_repeat = { | |
| cat_id: max(1.0, math.sqrt(repeat_thr / cat_freq)) | |
| for cat_id, cat_freq in category_freq.items() | |
| } | |
| # 3. For each image I, compute the image-level repeat factor: | |
| # r(I) = max_{c in I} r(c) | |
| repeat_factors = [] | |
| for idx in range(num_images): | |
| cat_ids = set(self.dataset.get_cat_ids(idx)) | |
| if len(cat_ids) == 0 and not self.filter_empty_gt: | |
| cat_ids = set([len(self.CLASSES)]) | |
| repeat_factor = 1 | |
| if len(cat_ids) > 0: | |
| repeat_factor = max( | |
| {category_repeat[cat_id] | |
| for cat_id in cat_ids}) | |
| repeat_factors.append(repeat_factor) | |
| return repeat_factors | |
| def __getitem__(self, idx): | |
| ori_index = self.repeat_indices[idx] | |
| return self.dataset[ori_index] | |
| def __len__(self): | |
| """Length after repetition.""" | |
| return len(self.repeat_indices) | |