Spaces:
Runtime error
Runtime error
first commit
Browse files- lib/ddim.py +348 -0
lib/ddim.py
ADDED
|
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
* Copyright (c) 2023 Salesforce, Inc.
|
| 3 |
+
* All rights reserved.
|
| 4 |
+
* SPDX-License-Identifier: Apache License 2.0
|
| 5 |
+
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
| 6 |
+
* By Can Qin
|
| 7 |
+
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
| 8 |
+
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
| 9 |
+
'''
|
| 10 |
+
|
| 11 |
+
"""SAMPLING ONLY."""
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
import numpy as np
|
| 15 |
+
from tqdm import tqdm
|
| 16 |
+
|
| 17 |
+
from lib.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \
|
| 18 |
+
extract_into_tensor
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class DDIMSampler(object):
|
| 22 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.model = model
|
| 25 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
| 26 |
+
self.schedule = schedule
|
| 27 |
+
|
| 28 |
+
def register_buffer(self, name, attr):
|
| 29 |
+
if type(attr) == torch.Tensor:
|
| 30 |
+
if attr.device != torch.device("cuda"):
|
| 31 |
+
attr = attr.to(torch.device("cuda"))
|
| 32 |
+
setattr(self, name, attr)
|
| 33 |
+
|
| 34 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
| 35 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
| 36 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps, verbose=verbose)
|
| 37 |
+
alphas_cumprod = self.model.alphas_cumprod
|
| 38 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
| 39 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
| 40 |
+
|
| 41 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
| 42 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 43 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
| 44 |
+
|
| 45 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 46 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
| 47 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
| 48 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
| 49 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
| 50 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
| 51 |
+
|
| 52 |
+
# ddim sampling parameters
|
| 53 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
| 54 |
+
ddim_timesteps=self.ddim_timesteps,
|
| 55 |
+
eta=ddim_eta, verbose=verbose)
|
| 56 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
| 57 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
| 58 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
| 59 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
| 60 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
| 61 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
| 62 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
| 63 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
| 64 |
+
|
| 65 |
+
@torch.no_grad()
|
| 66 |
+
def sample(self,
|
| 67 |
+
S,
|
| 68 |
+
batch_size,
|
| 69 |
+
shape,
|
| 70 |
+
conditioning=None,
|
| 71 |
+
callback=None,
|
| 72 |
+
normals_sequence=None,
|
| 73 |
+
img_callback=None,
|
| 74 |
+
quantize_x0=False,
|
| 75 |
+
eta=0.,
|
| 76 |
+
mask=None,
|
| 77 |
+
x0=None,
|
| 78 |
+
temperature=1.,
|
| 79 |
+
noise_dropout=0.,
|
| 80 |
+
score_corrector=None,
|
| 81 |
+
corrector_kwargs=None,
|
| 82 |
+
verbose=True,
|
| 83 |
+
x_T=None,
|
| 84 |
+
log_every_t=100,
|
| 85 |
+
unconditional_guidance_scale=1.,
|
| 86 |
+
unconditional_conditioning=None,
|
| 87 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
| 88 |
+
dynamic_threshold=None,
|
| 89 |
+
ucg_schedule=None,
|
| 90 |
+
**kwargs
|
| 91 |
+
):
|
| 92 |
+
if conditioning is not None:
|
| 93 |
+
if isinstance(conditioning, dict):
|
| 94 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
| 95 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
| 96 |
+
cbs = ctmp.shape[0]
|
| 97 |
+
if cbs != batch_size:
|
| 98 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 99 |
+
|
| 100 |
+
elif isinstance(conditioning, list):
|
| 101 |
+
for ctmp in conditioning:
|
| 102 |
+
if ctmp.shape[0] != batch_size:
|
| 103 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 104 |
+
|
| 105 |
+
else:
|
| 106 |
+
if conditioning.shape[0] != batch_size:
|
| 107 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
| 108 |
+
|
| 109 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
| 110 |
+
# sampling
|
| 111 |
+
C, H, W = shape
|
| 112 |
+
size = (batch_size, C, H, W)
|
| 113 |
+
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
| 114 |
+
|
| 115 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
| 116 |
+
callback=callback,
|
| 117 |
+
img_callback=img_callback,
|
| 118 |
+
quantize_denoised=quantize_x0,
|
| 119 |
+
mask=mask, x0=x0,
|
| 120 |
+
ddim_use_original_steps=False,
|
| 121 |
+
noise_dropout=noise_dropout,
|
| 122 |
+
temperature=temperature,
|
| 123 |
+
score_corrector=score_corrector,
|
| 124 |
+
corrector_kwargs=corrector_kwargs,
|
| 125 |
+
x_T=x_T,
|
| 126 |
+
log_every_t=log_every_t,
|
| 127 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 128 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 129 |
+
dynamic_threshold=dynamic_threshold,
|
| 130 |
+
ucg_schedule=ucg_schedule
|
| 131 |
+
)
|
| 132 |
+
return samples, intermediates
|
| 133 |
+
|
| 134 |
+
@torch.no_grad()
|
| 135 |
+
def ddim_sampling(self, cond, shape,
|
| 136 |
+
x_T=None, ddim_use_original_steps=False,
|
| 137 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
| 138 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
| 139 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 140 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
| 141 |
+
ucg_schedule=None):
|
| 142 |
+
device = self.model.betas.device
|
| 143 |
+
b = shape[0]
|
| 144 |
+
if x_T is None:
|
| 145 |
+
img = torch.randn(shape, device=device)
|
| 146 |
+
else:
|
| 147 |
+
img = x_T
|
| 148 |
+
|
| 149 |
+
if timesteps is None:
|
| 150 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
| 151 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
| 152 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
| 153 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
| 154 |
+
|
| 155 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
| 156 |
+
time_range = reversed(range(0, timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
| 157 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
| 158 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
| 159 |
+
|
| 160 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
| 161 |
+
|
| 162 |
+
for i, step in enumerate(iterator):
|
| 163 |
+
index = total_steps - i - 1
|
| 164 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
| 165 |
+
|
| 166 |
+
if mask is not None:
|
| 167 |
+
assert x0 is not None
|
| 168 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
| 169 |
+
img = img_orig * mask + (1. - mask) * img
|
| 170 |
+
|
| 171 |
+
if ucg_schedule is not None:
|
| 172 |
+
assert len(ucg_schedule) == len(time_range)
|
| 173 |
+
unconditional_guidance_scale = ucg_schedule[i]
|
| 174 |
+
|
| 175 |
+
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
| 176 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
| 177 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
| 178 |
+
corrector_kwargs=corrector_kwargs,
|
| 179 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 180 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 181 |
+
dynamic_threshold=dynamic_threshold)
|
| 182 |
+
img, pred_x0 = outs
|
| 183 |
+
if callback: callback(i)
|
| 184 |
+
if img_callback: img_callback(pred_x0, i)
|
| 185 |
+
|
| 186 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
| 187 |
+
intermediates['x_inter'].append(img)
|
| 188 |
+
intermediates['pred_x0'].append(pred_x0)
|
| 189 |
+
|
| 190 |
+
return img, intermediates
|
| 191 |
+
|
| 192 |
+
@torch.no_grad()
|
| 193 |
+
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
| 194 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 195 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
| 196 |
+
dynamic_threshold=None):
|
| 197 |
+
b, *_, device = *x.shape, x.device
|
| 198 |
+
|
| 199 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 200 |
+
model_output = self.model.apply_model(x, t, c)
|
| 201 |
+
else:
|
| 202 |
+
x_in = torch.cat([x] * 2)
|
| 203 |
+
t_in = torch.cat([t] * 2)
|
| 204 |
+
if isinstance(c, dict):
|
| 205 |
+
assert isinstance(unconditional_conditioning, dict)
|
| 206 |
+
c_in = dict()
|
| 207 |
+
for k in c:
|
| 208 |
+
if isinstance(c[k], list):
|
| 209 |
+
c_in[k] = [torch.cat([
|
| 210 |
+
unconditional_conditioning[k][i],
|
| 211 |
+
c[k][i]]) for i in range(len(c[k]))]
|
| 212 |
+
else:
|
| 213 |
+
c_in[k] = torch.cat([
|
| 214 |
+
unconditional_conditioning[k],
|
| 215 |
+
c[k]])
|
| 216 |
+
elif isinstance(c, list):
|
| 217 |
+
c_in = list()
|
| 218 |
+
assert isinstance(unconditional_conditioning, list)
|
| 219 |
+
for i in range(len(c)):
|
| 220 |
+
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
| 221 |
+
else:
|
| 222 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
| 223 |
+
model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
| 224 |
+
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
|
| 225 |
+
|
| 226 |
+
if self.model.parameterization == "v":
|
| 227 |
+
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
| 228 |
+
else:
|
| 229 |
+
e_t = model_output
|
| 230 |
+
|
| 231 |
+
if score_corrector is not None:
|
| 232 |
+
assert self.model.parameterization == "eps", 'not implemented'
|
| 233 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
| 234 |
+
|
| 235 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
| 236 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
| 237 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
| 238 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
| 239 |
+
# select parameters corresponding to the currently considered timestep
|
| 240 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
| 241 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
| 242 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
| 243 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device)
|
| 244 |
+
|
| 245 |
+
# current prediction for x_0
|
| 246 |
+
if self.model.parameterization != "v":
|
| 247 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
| 248 |
+
else:
|
| 249 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
| 250 |
+
|
| 251 |
+
if quantize_denoised:
|
| 252 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
| 253 |
+
|
| 254 |
+
if dynamic_threshold is not None:
|
| 255 |
+
raise NotImplementedError()
|
| 256 |
+
|
| 257 |
+
# direction pointing to x_t
|
| 258 |
+
dir_xt = (1. - a_prev - sigma_t ** 2).sqrt() * e_t
|
| 259 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
| 260 |
+
if noise_dropout > 0.:
|
| 261 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 262 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
| 263 |
+
return x_prev, pred_x0
|
| 264 |
+
|
| 265 |
+
@torch.no_grad()
|
| 266 |
+
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
| 267 |
+
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
| 268 |
+
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
| 269 |
+
|
| 270 |
+
assert t_enc <= num_reference_steps
|
| 271 |
+
num_steps = t_enc
|
| 272 |
+
|
| 273 |
+
if use_original_steps:
|
| 274 |
+
alphas_next = self.alphas_cumprod[:num_steps]
|
| 275 |
+
alphas = self.alphas_cumprod_prev[:num_steps]
|
| 276 |
+
else:
|
| 277 |
+
alphas_next = self.ddim_alphas[:num_steps]
|
| 278 |
+
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
| 279 |
+
|
| 280 |
+
x_next = x0
|
| 281 |
+
intermediates = []
|
| 282 |
+
inter_steps = []
|
| 283 |
+
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
| 284 |
+
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
| 285 |
+
if unconditional_guidance_scale == 1.:
|
| 286 |
+
noise_pred = self.model.apply_model(x_next, t, c)
|
| 287 |
+
else:
|
| 288 |
+
assert unconditional_conditioning is not None
|
| 289 |
+
e_t_uncond, noise_pred = torch.chunk(
|
| 290 |
+
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
| 291 |
+
torch.cat((unconditional_conditioning, c))), 2)
|
| 292 |
+
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
| 293 |
+
|
| 294 |
+
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
| 295 |
+
weighted_noise_pred = alphas_next[i].sqrt() * (
|
| 296 |
+
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
| 297 |
+
x_next = xt_weighted + weighted_noise_pred
|
| 298 |
+
if return_intermediates and i % (
|
| 299 |
+
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
| 300 |
+
intermediates.append(x_next)
|
| 301 |
+
inter_steps.append(i)
|
| 302 |
+
elif return_intermediates and i >= num_steps - 2:
|
| 303 |
+
intermediates.append(x_next)
|
| 304 |
+
inter_steps.append(i)
|
| 305 |
+
if callback: callback(i)
|
| 306 |
+
|
| 307 |
+
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
| 308 |
+
if return_intermediates:
|
| 309 |
+
out.update({'intermediates': intermediates})
|
| 310 |
+
return x_next, out
|
| 311 |
+
|
| 312 |
+
@torch.no_grad()
|
| 313 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
| 314 |
+
# fast, but does not allow for exact reconstruction
|
| 315 |
+
# t serves as an index to gather the correct alphas
|
| 316 |
+
if use_original_steps:
|
| 317 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
| 318 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
| 319 |
+
else:
|
| 320 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
| 321 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
| 322 |
+
|
| 323 |
+
if noise is None:
|
| 324 |
+
noise = torch.randn_like(x0)
|
| 325 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
| 326 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
| 327 |
+
|
| 328 |
+
@torch.no_grad()
|
| 329 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
| 330 |
+
use_original_steps=False, callback=None):
|
| 331 |
+
|
| 332 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
| 333 |
+
timesteps = timesteps[:t_start]
|
| 334 |
+
|
| 335 |
+
time_range = np.flip(timesteps)
|
| 336 |
+
total_steps = timesteps.shape[0]
|
| 337 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
| 338 |
+
|
| 339 |
+
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
| 340 |
+
x_dec = x_latent
|
| 341 |
+
for i, step in enumerate(iterator):
|
| 342 |
+
index = total_steps - i - 1
|
| 343 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
| 344 |
+
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
| 345 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 346 |
+
unconditional_conditioning=unconditional_conditioning)
|
| 347 |
+
if callback: callback(i)
|
| 348 |
+
return x_dec
|