Spaces:
Running
Running
Robert Castagna
commited on
Commit
·
f6f61ac
1
Parent(s):
50fc21f
updated growth strat
Browse files- pages/1_Fundamentals.py +5 -6
pages/1_Fundamentals.py
CHANGED
@@ -181,10 +181,9 @@ with st.form(key="selecting columns"):
|
|
181 |
metric_data, annual_series_data, quarterly_series_data = get_company_metrics(ticker)
|
182 |
|
183 |
# reformat all JSON returns to be flattened dictionaries
|
184 |
-
|
185 |
ev_dict = {'ev' :annual_series_data['ev'][0]['v'] if 'ev' in annual_series_data else 0}
|
186 |
-
salesPerShare_dict = {'salesPerShare':
|
187 |
-
operatingMargin_dict = {'operatingMargin': annual_series_data['operatingMargin'][0]['v'] if 'operatingMargin' in annual_series_data else 0}
|
188 |
eps_dict = {'eps' :annual_series_data['eps'][0]['v'] if 'eps' in annual_series_data else 0}
|
189 |
pe_dict = {'pe': annual_series_data['pe'][0]['v'] if 'pe' in annual_series_data else 0}
|
190 |
ps_dict = {'ps': annual_series_data['ps'][0]['v'] if 0 in annual_series_data['ps'] else 0}
|
@@ -192,7 +191,7 @@ with st.form(key="selecting columns"):
|
|
192 |
|
193 |
# merge all dictionary keys per ticker
|
194 |
combined_info = basic_info.copy() # Make a copy of the basic info
|
195 |
-
combined_info = combined_info | metric_data |
|
196 |
|
197 |
hash_map[ticker] = combined_info
|
198 |
|
@@ -202,10 +201,10 @@ with st.form(key="selecting columns"):
|
|
202 |
|
203 |
|
204 |
# Now, create a DataFrame from the hash_map
|
205 |
-
df_1 = pd.DataFrame.from_dict(hash_map, orient='index')[['finnhubIndustry','pe','ps','pb','eps','epsGrowth5Y','
|
206 |
df_2 = pd.DataFrame.from_dict(gains_data, orient='index', columns=['Recent Dividend','Price'])
|
207 |
df_final = df_1.join(df_2)
|
208 |
|
209 |
df_final['PE/G'] = df_final['pe'] / df_final['epsGrowth5Y']
|
210 |
-
df_final.rename({'finnhubIndustry':'Industry','pe':'P/E', 'ps':'P/S', 'pb':'P/B', 'eps': 'EPS'}, inplace=True, axis=1)
|
211 |
st.write(df_final)
|
|
|
181 |
metric_data, annual_series_data, quarterly_series_data = get_company_metrics(ticker)
|
182 |
|
183 |
# reformat all JSON returns to be flattened dictionaries
|
184 |
+
roe_dict = {'roe': annual_series_data['roe'][0]['v'] if 'roe' in annual_series_data else 0}
|
185 |
ev_dict = {'ev' :annual_series_data['ev'][0]['v'] if 'ev' in annual_series_data else 0}
|
186 |
+
salesPerShare_dict = {'salesPerShare': quarterly_series_data['salesPerShare'][0]['v'] if 'salesPerShare' in quarterly_series_data else 0}
|
|
|
187 |
eps_dict = {'eps' :annual_series_data['eps'][0]['v'] if 'eps' in annual_series_data else 0}
|
188 |
pe_dict = {'pe': annual_series_data['pe'][0]['v'] if 'pe' in annual_series_data else 0}
|
189 |
ps_dict = {'ps': annual_series_data['ps'][0]['v'] if 0 in annual_series_data['ps'] else 0}
|
|
|
191 |
|
192 |
# merge all dictionary keys per ticker
|
193 |
combined_info = basic_info.copy() # Make a copy of the basic info
|
194 |
+
combined_info = combined_info | metric_data | ev_dict | salesPerShare_dict | eps_dict | pe_dict | ps_dict | pb_dict | roe_dict
|
195 |
|
196 |
hash_map[ticker] = combined_info
|
197 |
|
|
|
201 |
|
202 |
|
203 |
# Now, create a DataFrame from the hash_map
|
204 |
+
df_1 = pd.DataFrame.from_dict(hash_map, orient='index')[['finnhubIndustry','roe','marketCapitalization','ebitdPerShareAnnual','pe','ps','pb','salesPerShare','eps','epsGrowth5Y','ev','operatingMarginAnnual', 'ebitdPerShareTTM', 'ebitdaCagr5Y', 'ebitdaInterimCagr5Y']]
|
205 |
df_2 = pd.DataFrame.from_dict(gains_data, orient='index', columns=['Recent Dividend','Price'])
|
206 |
df_final = df_1.join(df_2)
|
207 |
|
208 |
df_final['PE/G'] = df_final['pe'] / df_final['epsGrowth5Y']
|
209 |
+
df_final.rename({'finnhubIndustry':'Industry','marketCapitalization':'MarketCap','roe':'ROE', 'ev':'Enterp. Val', 'pe':'P/E', 'ps':'P/S', 'pb':'P/B', 'eps': 'EPS'}, inplace=True, axis=1)
|
210 |
st.write(df_final)
|