Robert Castagna commited on
Commit
f6f61ac
·
1 Parent(s): 50fc21f

updated growth strat

Browse files
Files changed (1) hide show
  1. pages/1_Fundamentals.py +5 -6
pages/1_Fundamentals.py CHANGED
@@ -181,10 +181,9 @@ with st.form(key="selecting columns"):
181
  metric_data, annual_series_data, quarterly_series_data = get_company_metrics(ticker)
182
 
183
  # reformat all JSON returns to be flattened dictionaries
184
- ebitPerShare_dict = {'ebitPerShare': annual_series_data['ebitPerShare'][0]['v'] if 'ebitPerShare' in annual_series_data else 0}
185
  ev_dict = {'ev' :annual_series_data['ev'][0]['v'] if 'ev' in annual_series_data else 0}
186
- salesPerShare_dict = {'salesPerShare': annual_series_data['salesPerShare'][0]['v'] if 'salesPerShare' in annual_series_data else 0}
187
- operatingMargin_dict = {'operatingMargin': annual_series_data['operatingMargin'][0]['v'] if 'operatingMargin' in annual_series_data else 0}
188
  eps_dict = {'eps' :annual_series_data['eps'][0]['v'] if 'eps' in annual_series_data else 0}
189
  pe_dict = {'pe': annual_series_data['pe'][0]['v'] if 'pe' in annual_series_data else 0}
190
  ps_dict = {'ps': annual_series_data['ps'][0]['v'] if 0 in annual_series_data['ps'] else 0}
@@ -192,7 +191,7 @@ with st.form(key="selecting columns"):
192
 
193
  # merge all dictionary keys per ticker
194
  combined_info = basic_info.copy() # Make a copy of the basic info
195
- combined_info = combined_info | metric_data | ebitPerShare_dict | ev_dict | salesPerShare_dict | operatingMargin_dict | eps_dict | pe_dict | ps_dict | pb_dict
196
 
197
  hash_map[ticker] = combined_info
198
 
@@ -202,10 +201,10 @@ with st.form(key="selecting columns"):
202
 
203
 
204
  # Now, create a DataFrame from the hash_map
205
- df_1 = pd.DataFrame.from_dict(hash_map, orient='index')[['finnhubIndustry','pe','ps','pb','eps','epsGrowth5Y','ebitdPerShareAnnual', 'ebitdPerShareTTM', 'ebitdaCagr5Y', 'ebitdaInterimCagr5Y']]
206
  df_2 = pd.DataFrame.from_dict(gains_data, orient='index', columns=['Recent Dividend','Price'])
207
  df_final = df_1.join(df_2)
208
 
209
  df_final['PE/G'] = df_final['pe'] / df_final['epsGrowth5Y']
210
- df_final.rename({'finnhubIndustry':'Industry','pe':'P/E', 'ps':'P/S', 'pb':'P/B', 'eps': 'EPS'}, inplace=True, axis=1)
211
  st.write(df_final)
 
181
  metric_data, annual_series_data, quarterly_series_data = get_company_metrics(ticker)
182
 
183
  # reformat all JSON returns to be flattened dictionaries
184
+ roe_dict = {'roe': annual_series_data['roe'][0]['v'] if 'roe' in annual_series_data else 0}
185
  ev_dict = {'ev' :annual_series_data['ev'][0]['v'] if 'ev' in annual_series_data else 0}
186
+ salesPerShare_dict = {'salesPerShare': quarterly_series_data['salesPerShare'][0]['v'] if 'salesPerShare' in quarterly_series_data else 0}
 
187
  eps_dict = {'eps' :annual_series_data['eps'][0]['v'] if 'eps' in annual_series_data else 0}
188
  pe_dict = {'pe': annual_series_data['pe'][0]['v'] if 'pe' in annual_series_data else 0}
189
  ps_dict = {'ps': annual_series_data['ps'][0]['v'] if 0 in annual_series_data['ps'] else 0}
 
191
 
192
  # merge all dictionary keys per ticker
193
  combined_info = basic_info.copy() # Make a copy of the basic info
194
+ combined_info = combined_info | metric_data | ev_dict | salesPerShare_dict | eps_dict | pe_dict | ps_dict | pb_dict | roe_dict
195
 
196
  hash_map[ticker] = combined_info
197
 
 
201
 
202
 
203
  # Now, create a DataFrame from the hash_map
204
+ df_1 = pd.DataFrame.from_dict(hash_map, orient='index')[['finnhubIndustry','roe','marketCapitalization','ebitdPerShareAnnual','pe','ps','pb','salesPerShare','eps','epsGrowth5Y','ev','operatingMarginAnnual', 'ebitdPerShareTTM', 'ebitdaCagr5Y', 'ebitdaInterimCagr5Y']]
205
  df_2 = pd.DataFrame.from_dict(gains_data, orient='index', columns=['Recent Dividend','Price'])
206
  df_final = df_1.join(df_2)
207
 
208
  df_final['PE/G'] = df_final['pe'] / df_final['epsGrowth5Y']
209
+ df_final.rename({'finnhubIndustry':'Industry','marketCapitalization':'MarketCap','roe':'ROE', 'ev':'Enterp. Val', 'pe':'P/E', 'ps':'P/S', 'pb':'P/B', 'eps': 'EPS'}, inplace=True, axis=1)
210
  st.write(df_final)