File size: 15,152 Bytes
3fd6ae9 6441476 3fd6ae9 6441476 2c659e0 6441476 71d0610 6441476 71d0610 6441476 3fd6ae9 6441476 3fd6ae9 6441476 3fd6ae9 6441476 3fd6ae9 6441476 3fd6ae9 6441476 3fd6ae9 6441476 b09c07f 6441476 45ce836 6441476 71d0610 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import io
import re
import struct
from enum import IntEnum
from math import floor
import requests
import gradio as gr
class GGUFValueType(IntEnum):
UINT8 = 0
INT8 = 1
UINT16 = 2
INT16 = 3
UINT32 = 4
INT32 = 5
FLOAT32 = 6
BOOL = 7
STRING = 8
ARRAY = 9
UINT64 = 10
INT64 = 11
FLOAT64 = 12
_simple_value_packing = {
GGUFValueType.UINT8: "<B",
GGUFValueType.INT8: "<b",
GGUFValueType.UINT16: "<H",
GGUFValueType.INT16: "<h",
GGUFValueType.UINT32: "<I",
GGUFValueType.INT32: "<i",
GGUFValueType.FLOAT32: "<f",
GGUFValueType.UINT64: "<Q",
GGUFValueType.INT64: "<q",
GGUFValueType.FLOAT64: "<d",
GGUFValueType.BOOL: "?",
}
value_type_info = {
GGUFValueType.UINT8: 1,
GGUFValueType.INT8: 1,
GGUFValueType.UINT16: 2,
GGUFValueType.INT16: 2,
GGUFValueType.UINT32: 4,
GGUFValueType.INT32: 4,
GGUFValueType.FLOAT32: 4,
GGUFValueType.UINT64: 8,
GGUFValueType.INT64: 8,
GGUFValueType.FLOAT64: 8,
GGUFValueType.BOOL: 1,
}
def get_single(value_type, file):
if value_type == GGUFValueType.STRING:
value_length = struct.unpack("<Q", file.read(8))[0]
value = file.read(value_length)
try:
value = value.decode('utf-8')
except:
pass
else:
type_str = _simple_value_packing.get(value_type)
bytes_length = value_type_info.get(value_type)
value = struct.unpack(type_str, file.read(bytes_length))[0]
return value
def load_metadata_from_file(file_obj):
"""Load metadata from a file-like object"""
metadata = {}
GGUF_MAGIC = struct.unpack("<I", file_obj.read(4))[0]
GGUF_VERSION = struct.unpack("<I", file_obj.read(4))[0]
ti_data_count = struct.unpack("<Q", file_obj.read(8))[0]
kv_data_count = struct.unpack("<Q", file_obj.read(8))[0]
if GGUF_VERSION == 1:
raise Exception('You are using an outdated GGUF, please download a new one.')
for i in range(kv_data_count):
key_length = struct.unpack("<Q", file_obj.read(8))[0]
key = file_obj.read(key_length)
value_type = GGUFValueType(struct.unpack("<I", file_obj.read(4))[0])
if value_type == GGUFValueType.ARRAY:
ltype = GGUFValueType(struct.unpack("<I", file_obj.read(4))[0])
length = struct.unpack("<Q", file_obj.read(8))[0]
arr = [get_single(ltype, file_obj) for _ in range(length)]
metadata[key.decode()] = arr
else:
value = get_single(value_type, file_obj)
metadata[key.decode()] = value
# Extract specific fields needed for VRAM calculation
extracted_fields = {}
for key, value in metadata.items():
if key.endswith('.block_count'):
extracted_fields['n_layers'] = value
elif key.endswith('.attention.head_count_kv'):
extracted_fields['n_kv_heads'] = max(value) if isinstance(value, list) else value
elif key.endswith('.embedding_length'):
extracted_fields['embedding_dim'] = value
elif key.endswith('.context_length'):
extracted_fields['context_length'] = value
elif key.endswith('.feed_forward_length'):
extracted_fields['feed_forward_dim'] = value
# Add extracted fields to metadata for easy access
metadata.update(extracted_fields)
return metadata
def download_gguf_partial(url, max_bytes=25 * 1024 * 1024):
"""Download the first max_bytes from a GGUF URL"""
try:
# Set up headers for partial content request
headers = {'Range': f'bytes=0-{max_bytes-1}'}
# Make the request
response = requests.get(url, headers=headers, stream=True)
response.raise_for_status()
# Read the content
content = response.content
# Convert to BytesIO for file-like interface
return io.BytesIO(content)
except Exception as e:
raise Exception(f"Failed to download GGUF file: {str(e)}")
def load_metadata(model_url, current_metadata):
"""Load metadata from model URL and return updated metadata dict"""
if not model_url or model_url.strip() == "":
return {}, "Please enter a model URL"
try:
# Get model size first
model_size_mb = get_model_size_mb_from_url(model_url)
# Normalize URL for downloading
normalized_url = normalize_huggingface_url(model_url)
# Download the first 25MB of the file
file_obj = download_gguf_partial(normalized_url)
# Parse the metadata
metadata = load_metadata_from_file(file_obj)
# Extract filename from URL
gguf_filename = model_url.split('/')[-1].split('?')[0] # Remove query parameters if any
# Extract model name from URL if it's a Hugging Face URL
model_name = model_url
if "huggingface.co/" in model_url:
try:
# Extract model name from URL like https://huggingface.co/user/model
parts = model_url.split("huggingface.co/")[1].split("/")
if len(parts) >= 2:
model_name = f"{parts[0]}/{parts[1]}"
except:
model_name = model_url
# Add URL, model name, and size to metadata
metadata['url'] = model_url
metadata['model_name'] = model_name
metadata['model_size_mb'] = model_size_mb
metadata['loaded'] = True
return metadata, gr.update(value=metadata["n_layers"], maximum=metadata["n_layers"]), f"Metadata loaded successfully for: {gguf_filename}"
except Exception as e:
error_msg = f"Error loading metadata: {str(e)}"
return {}, gr.update(), error_msg
def normalize_huggingface_url(url: str) -> str:
"""Normalize HuggingFace URL to resolve format for direct access"""
if 'huggingface.co' not in url:
return url
# Remove query parameters first
base_url = url.split('?')[0]
# Convert blob URL to resolve URL
if '/blob/' in base_url:
base_url = base_url.replace('/blob/', '/resolve/')
return base_url
def get_model_size_mb_from_url(model_url: str) -> float:
"""Get model size in MB from URL without downloading, handling multi-part files"""
try:
# Normalize the URL for direct access
normalized_url = normalize_huggingface_url(model_url)
# Get size of the main file
response = requests.head(normalized_url, allow_redirects=True)
response.raise_for_status()
main_file_size = int(response.headers.get('content-length', 0))
# Extract filename from original URL
filename = normalized_url.split('/')[-1]
# Check for multipart pattern (e.g., model-00001-of-00002.gguf)
match = re.match(r'(.+)-(\d+)-of-(\d+)\.gguf$', filename)
if match:
base_pattern = match.group(1)
total_parts = int(match.group(3))
total_size = 0
base_url = '/'.join(normalized_url.split('/')[:-1]) + '/'
# Get size of all parts
for part_num in range(1, total_parts + 1):
part_filename = f"{base_pattern}-{part_num:05d}-of-{total_parts:05d}.gguf"
part_url = base_url + part_filename
try:
part_response = requests.head(part_url, allow_redirects=True)
part_response.raise_for_status()
part_size = int(part_response.headers.get('content-length', 0))
total_size += part_size
except requests.RequestException as e:
print(f"Warning: Could not get size of {part_filename}, estimating...")
# If we can't get some parts, estimate based on what we have
if total_size > 0:
avg_size = total_size / (part_num - 1)
remaining_parts = total_parts - (part_num - 1)
total_size += avg_size * remaining_parts
else:
# Fallback to main file size * total parts
total_size = main_file_size * total_parts
break
return total_size / (1024 ** 2)
else:
# Single part file
return main_file_size / (1024 ** 2)
except Exception as e:
print(f"Error getting model size: {e}")
return 0.0
def estimate_vram(metadata, gpu_layers, ctx_size, cache_type):
"""Calculate VRAM usage using the actual formula"""
try:
# Extract required values from metadata
n_layers = metadata.get('n_layers')
n_kv_heads = metadata.get('n_kv_heads')
embedding_dim = metadata.get('embedding_dim')
context_length = metadata.get('context_length')
feed_forward_dim = metadata.get('feed_forward_dim')
size_in_mb = metadata.get('model_size_mb', 0)
# Check if we have all required fields
required_fields = [n_layers, n_kv_heads, embedding_dim, context_length, feed_forward_dim]
if any(field is None for field in required_fields):
missing = [name for name, field in zip(
['n_layers', 'n_kv_heads', 'embedding_dim', 'context_length', 'feed_forward_dim'],
required_fields) if field is None]
raise ValueError(f"Missing required metadata fields: {missing}")
# Ensure gpu_layers doesn't exceed total layers
if gpu_layers > n_layers:
gpu_layers = n_layers
# Convert cache_type to numeric
if cache_type == 'q4_0':
cache_type = 4
elif cache_type == 'q8_0':
cache_type = 8
else:
cache_type = 16
# Derived features
size_per_layer = size_in_mb / max(n_layers, 1e-6)
kv_cache_factor = n_kv_heads * cache_type * ctx_size
embedding_per_context = embedding_dim / ctx_size
# Calculate VRAM using the model
# Details: https://oobabooga.github.io/blog/posts/gguf-vram-formula/
vram = (
(size_per_layer - 17.99552795246051 + 3.148552680382576e-05 * kv_cache_factor)
* (gpu_layers + max(0.9690636483914102, cache_type - (floor(50.77817218646521 * embedding_per_context) + 9.987899908205632)))
+ 1516.522943869404
)
return vram
except Exception as e:
print(f"Error in VRAM calculation: {e}")
raise
def estimate_vram_wrapper(model_metadata, gpu_layers, ctx_size, cache_type):
"""Wrapper function to estimate VRAM usage"""
if not model_metadata or 'model_name' not in model_metadata:
return "<div id=\"vram-info\">Estimated VRAM to load the model:</div>"
# Use cache_type directly (it's already a string from the radio button)
try:
result = estimate_vram(model_metadata, gpu_layers, ctx_size, cache_type)
conservative = result + 577
return f"""<div id="vram-info">
<div>Expected VRAM usage: <span class="value">{result:.0f} MiB</span></div>
<div>Safe estimate: <span class="value">{conservative:.0f} MiB</span> - 95% chance the VRAM is at most this.</div>
</div>"""
except Exception as e:
return f"<div id=\"vram-info\">Estimated VRAM to load the model: <span class=\"value\">Error: {str(e)}</span></div>"
def create_ui():
"""Create the simplified UI"""
# Custom CSS to limit max width and center the content
css = """
body {
max-width: 810px !important;
margin: 0 auto !important;
}
#vram-info {
padding: 10px;
border-radius: 4px;
background-color: var(--background-fill-secondary);
}
#vram-info .value {
font-weight: bold;
color: var(--primary-500);
}
"""
with gr.Blocks(css=css) as demo:
# State to hold model metadata
model_metadata = gr.State(value={})
gr.Markdown("# Accurate GGUF VRAM Calculator\n\nCalculate VRAM for GGUF models from GPU layers and context length using an accurate formula.\n\nFor an explanation about how this works, consult this blog post: https://oobabooga.github.io/blog/posts/gguf-vram-formula/")
with gr.Row():
with gr.Column():
# Model URL input
model_url = gr.Textbox(
label="GGUF Model URL",
placeholder="https://huggingface.co/unsloth/Qwen3-235B-A22B-GGUF/blob/main/UD-Q2_K_XL/Qwen3-235B-A22B-UD-Q2_K_XL-00001-of-00002.gguf",
value=""
)
# Load metadata button
load_metadata_btn = gr.Button("Load metadata", elem_classes='refresh-button')
# GPU layers slider
gpu_layers = gr.Slider(
label="GPU Layers",
minimum=0,
maximum=256,
value=256,
info='`--gpu-layers` in llama.cpp.'
)
# Context size slider
ctx_size = gr.Slider(
label='Context Length',
minimum=512,
maximum=131072,
step=256,
value=8192,
info='`--ctx-size` in llama.cpp.'
)
# Cache type checkbox group
cache_type = gr.Radio(
choices=['fp16', 'q8_0', 'q4_0'],
value='fp16',
label="Cache Type",
info='Cache quantization.'
)
# VRAM info display
vram_info = gr.HTML(
value="<div id=\"vram-info\">Estimated VRAM to load the model:</div>"
)
# Status display
status = gr.Textbox(
label="Status",
value="No model loaded",
interactive=False
)
# Event handlers
load_metadata_btn.click(
load_metadata,
inputs=[model_url, model_metadata],
outputs=[model_metadata, gpu_layers, status],
show_progress=True
).then(
estimate_vram_wrapper,
inputs=[model_metadata, gpu_layers, ctx_size, cache_type],
outputs=[vram_info],
show_progress=False
)
# Update VRAM estimate when any parameter changes
for component in [gpu_layers, ctx_size, cache_type]:
component.change(
estimate_vram_wrapper,
inputs=[model_metadata, gpu_layers, ctx_size, cache_type],
outputs=[vram_info],
show_progress=False
)
# Also update when model_metadata state changes
model_metadata.change(
estimate_vram_wrapper,
inputs=[model_metadata, gpu_layers, ctx_size, cache_type],
outputs=[vram_info],
show_progress=False
)
return demo
if __name__ == "__main__":
# Create and launch the app
demo = create_ui()
demo.launch()
|