Robys01 commited on
Commit
9d1a90e
·
1 Parent(s): bd2e600

Enhance Dockerfile and app.py for model directory permissions and download logging

Browse files
Files changed (2) hide show
  1. Dockerfile +2 -2
  2. app.py +4 -2
Dockerfile CHANGED
@@ -28,8 +28,8 @@ WORKDIR /app
28
  # Install runtime dependency: libopenblas.so.0 is provided by libopenblas-base.
29
  RUN apt-get update && apt-get install -y build-essential cmake libopenblas-dev liblapack-dev libopenblas-dev liblapack-dev
30
 
31
- # Create the "model" folder for caching the model file
32
- RUN mkdir -p /app/model
33
 
34
  COPY --from=builder /app/venv venv
35
 
 
28
  # Install runtime dependency: libopenblas.so.0 is provided by libopenblas-base.
29
  RUN apt-get update && apt-get install -y build-essential cmake libopenblas-dev liblapack-dev libopenblas-dev liblapack-dev
30
 
31
+ # Create the "model" directory with appropriate permissions
32
+ RUN mkdir -p /app/model && chmod -R 777 /app/model
33
 
34
  COPY --from=builder /app/venv venv
35
 
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import os
 
2
  import torch
3
  from models import UNet
4
  from test_functions import process_image
@@ -12,13 +13,14 @@ MODEL_PATH = "model/best_unet_model.pth"
12
  os.makedirs("model", exist_ok=True)
13
 
14
  if not os.path.exists(MODEL_PATH):
15
- print("Downloading model from Hugging Face...")
16
  path = hf_hub_download(repo_id="Robys01/face-aging", filename="best_unet_model.pth", local_dir="model", cache_dir="model")
17
- print(f"Model downloaded to {path}")
18
 
19
  model = UNet()
20
  model.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device("cpu"), weights_only=False))
21
  model.eval()
 
22
 
23
  def age_image(image: Image.Image, source_age: int, target_age: int) -> Image.Image:
24
  # Ensure the image is in RGB or grayscale; if not, convert it.
 
1
  import os
2
+ import time
3
  import torch
4
  from models import UNet
5
  from test_functions import process_image
 
13
  os.makedirs("model", exist_ok=True)
14
 
15
  if not os.path.exists(MODEL_PATH):
16
+ print("Starting model download at", time.strftime("%Y-%m-%d %H:%M:%S"))
17
  path = hf_hub_download(repo_id="Robys01/face-aging", filename="best_unet_model.pth", local_dir="model", cache_dir="model")
18
+ print("Model downloaded to", MODEL_PATH, "at", time.strftime("%Y-%m-%d %H:%M:%S"))
19
 
20
  model = UNet()
21
  model.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device("cpu"), weights_only=False))
22
  model.eval()
23
+ print("Model loaded at", time.strftime("%Y-%m-%d %H:%M:%S"))
24
 
25
  def age_image(image: Image.Image, source_age: int, target_age: int) -> Image.Image:
26
  # Ensure the image is in RGB or grayscale; if not, convert it.