import face_recognition import numpy as np import torch from torch.autograd import Variable from torchvision import transforms from PIL import Image mask_file = torch.from_numpy(np.array(Image.open('assets/mask1024.jpg').convert('L'))) / 255 small_mask_file = torch.from_numpy(np.array(Image.open('assets/mask512.jpg').convert('L'))) / 255 def sliding_window_tensor(input_tensor, window_size, stride, your_model, mask=mask_file, small_mask=small_mask_file): """ Apply aging operation on input tensor using a sliding-window method. This operation is done on the GPU, if available. """ input_tensor = input_tensor.to(next(your_model.parameters()).device) mask = mask.to(next(your_model.parameters()).device) small_mask = small_mask.to(next(your_model.parameters()).device) n, c, h, w = input_tensor.size() output_tensor = torch.zeros((n, 3, h, w), dtype=input_tensor.dtype, device=input_tensor.device) count_tensor = torch.zeros((n, 3, h, w), dtype=torch.float32, device=input_tensor.device) add = 2 if window_size % stride != 0 else 1 for y in range(0, h - window_size + add, stride): for x in range(0, w - window_size + add, stride): window = input_tensor[:, :, y:y + window_size, x:x + window_size] # Apply the same preprocessing as during training input_variable = Variable(window, requires_grad=False) # Assuming GPU is available # Forward pass with torch.no_grad(): output = your_model(input_variable) output_tensor[:, :, y:y + window_size, x:x + window_size] += output * small_mask count_tensor[:, :, y:y + window_size, x:x + window_size] += small_mask count_tensor = torch.clamp(count_tensor, min=1.0) # Average the overlapping regions output_tensor /= count_tensor # Apply mask output_tensor *= mask return output_tensor.cpu() def process_image(your_model, image, source_age, target_age=0, window_size=512, stride=256, steps=18): input_size = (1024, 1024) # image = face_recognition.load_image_file(filename) image = np.array(image) fl = face_recognition.face_locations(image)[0] # calculate margins margin_y_t = int((fl[2] - fl[0]) * .63 * .85) # larger as the forehead is often cut off margin_y_b = int((fl[2] - fl[0]) * .37 * .85) margin_x = int((fl[1] - fl[3]) // (2 / .85)) margin_y_t += 2 * margin_x - margin_y_t - margin_y_b # make sure square is preserved l_y = max([fl[0] - margin_y_t, 0]) r_y = min([fl[2] + margin_y_b, image.shape[0]]) l_x = max([fl[3] - margin_x, 0]) r_x = min([fl[1] + margin_x, image.shape[1]]) # crop image cropped_image = image[l_y:r_y, l_x:r_x, :] # Resizing orig_size = cropped_image.shape[:2] cropped_image = transforms.ToTensor()(cropped_image) cropped_image_resized = transforms.Resize(input_size, interpolation=Image.BILINEAR, antialias=True)(cropped_image) source_age_channel = torch.full_like(cropped_image_resized[:1, :, :], source_age / 100) target_age_channel = torch.full_like(cropped_image_resized[:1, :, :], target_age / 100) input_tensor = torch.cat([cropped_image_resized, source_age_channel, target_age_channel], dim=0).unsqueeze(0) image = transforms.ToTensor()(image) # performing actions on image aged_cropped_image = sliding_window_tensor(input_tensor, window_size, stride, your_model) # resize back to original size aged_cropped_image_resized = transforms.Resize(orig_size, interpolation=Image.BILINEAR, antialias=True)( aged_cropped_image) # re-apply image[:, l_y:r_y, l_x:r_x] += aged_cropped_image_resized.squeeze(0) image = torch.clamp(image, 0, 1) return transforms.functional.to_pil_image(image)