Spaces:
Sleeping
Sleeping
File size: 1,707 Bytes
c48497c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
import mne
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load open-source LLM (no training needed)
model_name = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16, device_map="auto")
def process_eeg(file):
# Load EEG data using MNE
raw = mne.io.read_raw_fif(file.name, preload=True)
# Compute some features (e.g., average band powers)
psd, freqs = mne.time_frequency.psd_welch(raw, fmin=1, fmax=40)
alpha_power = compute_band_power(psd, freqs, 8, 12)
beta_power = compute_band_power(psd, freqs, 13, 30)
# Create a human-readable summary of features
data_summary = f"Alpha power: {alpha_power}, Beta power: {beta_power}. The data shows stable alpha rhythms and slightly elevated beta."
# Prompt the LLM
prompt = f"""You are a neuroscientist analyzing EEG features.
Data Summary: {data_summary}
Provide a concise, user-friendly interpretation of these findings."""
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_length=200, do_sample=True, top_k=50, top_p=0.95)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
return summary
iface = gr.Interface(
fn=process_eeg,
inputs=gr.File(label="Upload your EEG data (FIF format)"),
outputs="text",
title="NeuroNarrative-Lite: EEG Summary",
description="Upload EEG data to receive a text-based summary from an open-source LLM. No training required!"
)
if __name__ == "__main__":
iface.launch()
|