Spaces:
Runtime error
Runtime error
| import tensorflow as tf | |
| from keras import backend as K | |
| import numpy as np | |
| import scipy | |
| import os | |
| import cv2 as cv | |
| def bright_mae(y_true, y_pred): | |
| return K.mean(K.abs(y_pred[:,:,:,:3] - y_true[:,:,:,:3])) | |
| def bright_mse(y_true, y_pred): | |
| return K.mean((y_pred[:,:,:,:3] - y_true[:,:,:,:3])**2) | |
| def bright_AB(y_true, y_pred): | |
| return K.abs(K.mean(y_true[:,:,:,:3])-K.mean(y_pred[:,:,:,:3])) | |
| def log10(x): | |
| numerator = K.log(x) | |
| denominator = K.log(K.constant(10, dtype=numerator.dtype)) | |
| return numerator / denominator | |
| def bright_psnr(y_true, y_pred): | |
| mse = K.mean((K.abs(y_pred[:,:,:,:3] - y_true[:,:,:,:3])) ** 2) | |
| max_num = 1.0 | |
| psnr = 10 * log10(max_num ** 2 / mse) | |
| return psnr | |
| def _tf_fspecial_gauss(size, sigma): | |
| """Function to mimic the 'fspecial' gaussian MATLAB function | |
| """ | |
| x_data, y_data = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1] | |
| x_data = np.expand_dims(x_data, axis=-1) | |
| x_data = np.expand_dims(x_data, axis=-1) | |
| y_data = np.expand_dims(y_data, axis=-1) | |
| y_data = np.expand_dims(y_data, axis=-1) | |
| x = tf.constant(x_data, dtype=tf.float32) | |
| y = tf.constant(y_data, dtype=tf.float32) | |
| g = tf.exp(-((x**2 + y**2)/(2.0*sigma**2))) | |
| return g / tf.reduce_sum(g) | |
| def tf_ssim(img1, img2, cs_map=False, mean_metric=True, size=11, sigma=1.5): | |
| window = _tf_fspecial_gauss(size, sigma) # window shape [size, size] | |
| K1 = 0.01 | |
| K2 = 0.03 | |
| L = 1 # depth of image (255 in case the image has a differnt scale) | |
| C1 = (K1*L)**2 | |
| C2 = (K2*L)**2 | |
| mu1 = tf.nn.conv2d(img1, window, strides=[1,1,1,1], padding='VALID') | |
| mu2 = tf.nn.conv2d(img2, window, strides=[1,1,1,1],padding='VALID') | |
| mu1_sq = mu1*mu1 | |
| mu2_sq = mu2*mu2 | |
| mu1_mu2 = mu1*mu2 | |
| sigma1_sq = tf.nn.conv2d(img1*img1, window, strides=[1,1,1,1],padding='VALID') - mu1_sq | |
| sigma2_sq = tf.nn.conv2d(img2*img2, window, strides=[1,1,1,1],padding='VALID') - mu2_sq | |
| sigma12 = tf.nn.conv2d(img1*img2, window, strides=[1,1,1,1],padding='VALID') - mu1_mu2 | |
| if cs_map: | |
| value = (((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)* | |
| (sigma1_sq + sigma2_sq + C2)), | |
| (2.0*sigma12 + C2)/(sigma1_sq + sigma2_sq + C2)) | |
| else: | |
| value = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)* | |
| (sigma1_sq + sigma2_sq + C2)) | |
| if mean_metric: | |
| value = tf.reduce_mean(value) | |
| return value | |
| def tf_ms_ssim(img1, img2, mean_metric=True, level=5): | |
| weight = tf.constant([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=tf.float32) | |
| mssim = [] | |
| mcs = [] | |
| for l in range(level): | |
| ssim_map, cs_map = tf_ssim(img1, img2, cs_map=True, mean_metric=False) | |
| mssim.append(tf.reduce_mean(ssim_map)) | |
| mcs.append(tf.reduce_mean(cs_map)) | |
| filtered_im1 = tf.nn.avg_pool(img1, [1,2,2,1], [1,2,2,1], padding='SAME') | |
| filtered_im2 = tf.nn.avg_pool(img2, [1,2,2,1], [1,2,2,1], padding='SAME') | |
| img1 = filtered_im1 | |
| img2 = filtered_im2 | |
| # list to tensor of dim D+1 | |
| mssim = tf.stack(mssim, axis=0) | |
| mcs = tf.stack(mcs, axis=0) | |
| value = (tf.reduce_prod(mcs[0:level-1]**weight[0:level-1])* | |
| (mssim[level-1]**weight[level-1])) | |
| if mean_metric: | |
| value = tf.reduce_mean(value) | |
| return value | |
| def bright_SSIM(y_true, y_pred): | |
| SSIM_loss = tf_ssim(tf.expand_dims(y_pred[:,:,:,0], -1), tf.expand_dims(y_true[:,:,:,0], -1))+tf_ssim(tf.expand_dims(y_pred[:,:,:,1], -1), tf.expand_dims(y_true[:,:,:,1], -1)) + tf_ssim(tf.expand_dims(y_pred[:,:,:,2], -1), tf.expand_dims(y_true[:,:,:,2], -1)) | |
| return SSIM_loss/3 | |
| def psnr_cau(y_true, y_pred): | |
| mse = np.mean((np.abs(y_pred - y_true)) ** 2) | |
| max_num = 1.0 | |
| psnr = 10 * np.log10(max_num ** 2 / mse) | |
| return psnr | |
| def save_model(model, name, epoch, batch_i): | |
| modelname = './Res_models/' + str(epoch) + '_' + str(batch_i) + name + '.h5' | |
| model.save_weights(modelname) | |
| def imread_color(path): | |
| img = cv.imread(path, cv.IMREAD_COLOR | cv.IMREAD_ANYDEPTH) / 255. | |
| b, g, r = cv.split(img) | |
| img_rgb = cv.merge([r, g, b]) | |
| return img_rgb | |
| # return scipy.misc.imread(path, mode='RGB').astype(np.float) / 255. | |
| def imwrite(path, img): | |
| r, g, b = cv.split(img*255) | |
| img_rgb = cv.merge([b, g, r]) | |
| cv.imwrite(path, img_rgb) | |
| # scipy.misc.toimage(img * 255, high=255, low=0, cmin=0, cmax=255).save(path) | |
| def range_scale(x): | |
| return x * 2 - 1. |