Spaces:
Running
Running
Commit
·
f098be9
1
Parent(s):
521213a
b roll
Browse files- app.py +96 -1
- broll_generator.py +391 -0
- utils.py +13 -0
app.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
import json
|
|
|
2 |
from typing import Generator, List
|
3 |
|
4 |
import gradio as gr
|
5 |
-
from crop_utils import get_image_crop
|
6 |
from openai import OpenAI
|
|
|
|
|
|
|
7 |
from prompts import (
|
8 |
get_chat_system_prompt,
|
9 |
get_live_event_system_prompt,
|
@@ -319,6 +322,98 @@ def chat(
|
|
319 |
):
|
320 |
yield content
|
321 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
break # Exit streaming loop if tool calls detected
|
323 |
|
324 |
if not tool_calls_detected and chunk.choices[0].delta.content is not None:
|
|
|
1 |
import json
|
2 |
+
import os
|
3 |
from typing import Generator, List
|
4 |
|
5 |
import gradio as gr
|
|
|
6 |
from openai import OpenAI
|
7 |
+
|
8 |
+
from broll_generator import format_broll_output, process_broll_generation
|
9 |
+
from crop_utils import get_image_crop
|
10 |
from prompts import (
|
11 |
get_chat_system_prompt,
|
12 |
get_live_event_system_prompt,
|
|
|
322 |
):
|
323 |
yield content
|
324 |
return
|
325 |
+
|
326 |
+
elif tool_call.function.name == "generate_broll_suggestions":
|
327 |
+
# Generate B-roll suggestions based on the initial analysis
|
328 |
+
print("DOING B-ROLL GENERATION")
|
329 |
+
assistant_message = response.choices[0].message
|
330 |
+
messages.append(
|
331 |
+
{
|
332 |
+
"role": assistant_message.role,
|
333 |
+
"content": assistant_message.content or "",
|
334 |
+
"tool_calls": (
|
335 |
+
[
|
336 |
+
{
|
337 |
+
"id": tc.id,
|
338 |
+
"type": tc.type,
|
339 |
+
"function": {
|
340 |
+
"name": tc.function.name,
|
341 |
+
"arguments": tc.function.arguments,
|
342 |
+
},
|
343 |
+
}
|
344 |
+
for tc in assistant_message.tool_calls
|
345 |
+
]
|
346 |
+
if assistant_message.tool_calls
|
347 |
+
else None
|
348 |
+
),
|
349 |
+
}
|
350 |
+
)
|
351 |
+
|
352 |
+
# Get the initial analysis first (if not already done)
|
353 |
+
analysis_messages = []
|
354 |
+
# print(messages)
|
355 |
+
for msg in messages:
|
356 |
+
if msg["role"] == "assistant" and len(msg["content"]) > 100:
|
357 |
+
analysis_messages.append(msg["content"])
|
358 |
+
|
359 |
+
if analysis_messages:
|
360 |
+
# Use the most recent analysis text
|
361 |
+
analysis_text = analysis_messages[-1]
|
362 |
+
|
363 |
+
# Get transcript data
|
364 |
+
transcript_data = transcript_processor.segments
|
365 |
+
|
366 |
+
# Get Google API credentials from environment
|
367 |
+
google_api_key = os.getenv("GOOGLE_API_KEY")
|
368 |
+
search_engine_id = os.getenv("GOOGLE_SEARCH_ENGINE_ID")
|
369 |
+
|
370 |
+
try:
|
371 |
+
# Process B-roll generation
|
372 |
+
processed_clips = process_broll_generation(
|
373 |
+
transcript_data,
|
374 |
+
analysis_text,
|
375 |
+
google_api_key,
|
376 |
+
search_engine_id,
|
377 |
+
)
|
378 |
+
|
379 |
+
# Format the output
|
380 |
+
broll_output = format_broll_output(processed_clips)
|
381 |
+
|
382 |
+
function_call_result_message = {
|
383 |
+
"role": "tool",
|
384 |
+
"content": f"Generated B-roll suggestions for {len(processed_clips)} clips",
|
385 |
+
"name": tool_call.function.name,
|
386 |
+
"tool_call_id": tool_call.id,
|
387 |
+
}
|
388 |
+
messages.append(function_call_result_message)
|
389 |
+
|
390 |
+
yield broll_output
|
391 |
+
return
|
392 |
+
|
393 |
+
except Exception as e:
|
394 |
+
error_msg = (
|
395 |
+
f"Error generating B-roll suggestions: {str(e)}"
|
396 |
+
)
|
397 |
+
function_call_result_message = {
|
398 |
+
"role": "tool",
|
399 |
+
"content": error_msg,
|
400 |
+
"name": tool_call.function.name,
|
401 |
+
"tool_call_id": tool_call.id,
|
402 |
+
}
|
403 |
+
messages.append(function_call_result_message)
|
404 |
+
yield error_msg
|
405 |
+
return
|
406 |
+
else:
|
407 |
+
error_msg = "No analysis found. Please run the initial analysis first before generating B-roll suggestions."
|
408 |
+
function_call_result_message = {
|
409 |
+
"role": "tool",
|
410 |
+
"content": error_msg,
|
411 |
+
"name": tool_call.function.name,
|
412 |
+
"tool_call_id": tool_call.id,
|
413 |
+
}
|
414 |
+
messages.append(function_call_result_message)
|
415 |
+
yield error_msg
|
416 |
+
return
|
417 |
break # Exit streaming loop if tool calls detected
|
418 |
|
419 |
if not tool_calls_detected and chunk.choices[0].delta.content is not None:
|
broll_generator.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from typing import Dict, List, Tuple, Union
|
5 |
+
|
6 |
+
import requests
|
7 |
+
from openai import OpenAI
|
8 |
+
|
9 |
+
|
10 |
+
def extract_clips_from_analysis(analysis_text: str) -> List[Dict]:
|
11 |
+
"""
|
12 |
+
Extract social media clips from the initial analysis output
|
13 |
+
|
14 |
+
Args:
|
15 |
+
analysis_text: The formatted analysis text from get_initial_analysis
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
List of clip dictionaries with title, start_time, and end_time
|
19 |
+
"""
|
20 |
+
print(f"Starting extract_clips_from_analysis with analysis_text length: {len(analysis_text)}")
|
21 |
+
clips = []
|
22 |
+
|
23 |
+
# Pattern to match clip links with timestamps
|
24 |
+
# Example: [Introduction and Event Overview <div id='topic' style="display: inline"> 40s at 03:25 </div>]
|
25 |
+
pattern = r"\[([^<]+)<div[^>]*>\s*(\d+)s\s+at\s+(\d{2}):(\d{2})\s*</div>\]"
|
26 |
+
|
27 |
+
matches = re.findall(pattern, analysis_text)
|
28 |
+
print(f"Found {len(matches)} matches in analysis text")
|
29 |
+
|
30 |
+
for match in matches:
|
31 |
+
title = match[0].strip()
|
32 |
+
duration = int(match[1])
|
33 |
+
minutes = int(match[2])
|
34 |
+
seconds = int(match[3])
|
35 |
+
|
36 |
+
start_time = minutes * 60 + seconds
|
37 |
+
end_time = start_time + duration
|
38 |
+
|
39 |
+
clip = {
|
40 |
+
"clip_title": title,
|
41 |
+
"start_time": start_time,
|
42 |
+
"end_time": end_time,
|
43 |
+
"duration": duration,
|
44 |
+
}
|
45 |
+
clips.append(clip)
|
46 |
+
print(f"Extracted clip: {title} ({start_time}-{end_time}s)")
|
47 |
+
|
48 |
+
print(f"Total clips extracted: {len(clips)}")
|
49 |
+
return clips
|
50 |
+
|
51 |
+
|
52 |
+
def extract_transcript_content(
|
53 |
+
transcript_data: List, start_time: float, end_time: float
|
54 |
+
) -> str:
|
55 |
+
"""
|
56 |
+
Extract transcript content between start and end times
|
57 |
+
|
58 |
+
Args:
|
59 |
+
transcript_data: List of transcript segments (TranscriptSegment objects or dicts)
|
60 |
+
start_time: Start time in seconds
|
61 |
+
end_time: End time in seconds
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
Extracted transcript text
|
65 |
+
"""
|
66 |
+
print(f"Extracting transcript content for {start_time}-{end_time}s from {len(transcript_data)} segments")
|
67 |
+
content = []
|
68 |
+
|
69 |
+
for segment in transcript_data:
|
70 |
+
# Handle both TranscriptSegment objects and dictionary formats
|
71 |
+
if hasattr(segment, "start_time") and hasattr(segment, "end_time"):
|
72 |
+
# TranscriptSegment object
|
73 |
+
segment_start = segment.start_time
|
74 |
+
segment_end = segment.end_time
|
75 |
+
segment_text = segment.text
|
76 |
+
elif hasattr(segment, "get"):
|
77 |
+
# Dictionary format
|
78 |
+
segment_start = segment.get("start_time", segment.get("start", 0))
|
79 |
+
segment_end = segment.get("end_time", segment.get("end", 0))
|
80 |
+
segment_text = segment.get("text", "")
|
81 |
+
else:
|
82 |
+
# Handle other object types with direct attribute access
|
83 |
+
segment_start = getattr(segment, "start_time", getattr(segment, "start", 0))
|
84 |
+
segment_end = getattr(segment, "end_time", getattr(segment, "end", 0))
|
85 |
+
segment_text = getattr(segment, "text", "")
|
86 |
+
|
87 |
+
# Check if segment overlaps with our time range
|
88 |
+
if segment_start <= end_time and segment_end >= start_time:
|
89 |
+
content.append(segment_text)
|
90 |
+
|
91 |
+
result = " ".join(content).strip()
|
92 |
+
print(f"Extracted {len(content)} segments, total text length: {len(result)}")
|
93 |
+
return result
|
94 |
+
|
95 |
+
|
96 |
+
def generate_broll_queries(
|
97 |
+
client: OpenAI, transcript_content: str, clip_data: Dict
|
98 |
+
) -> List[Dict]:
|
99 |
+
"""
|
100 |
+
Generate B-roll search queries using OpenAI based on transcript content and clip data
|
101 |
+
|
102 |
+
Args:
|
103 |
+
client: OpenAI client
|
104 |
+
transcript_content: Transcript text for the clip timeframe
|
105 |
+
clip_data: Social media clip data with timestamps
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
List of query dictionaries with timestamps
|
109 |
+
"""
|
110 |
+
duration = clip_data.get("end_time", 0) - clip_data.get("start_time", 0)
|
111 |
+
print(f"Generating B-roll queries for clip: {clip_data.get('clip_title', 'Unknown')}")
|
112 |
+
|
113 |
+
prompt = f"""
|
114 |
+
Analyze this transcript content from a social media clip and generate appropriate B-roll search queries.
|
115 |
+
|
116 |
+
Clip Title: {clip_data.get('clip_title', 'Unknown')}
|
117 |
+
Start Time: {clip_data.get('start_time', 0)} seconds
|
118 |
+
End Time: {clip_data.get('end_time', 0)} seconds
|
119 |
+
Duration: {duration} seconds
|
120 |
+
|
121 |
+
Transcript Content:
|
122 |
+
{transcript_content}
|
123 |
+
|
124 |
+
Generate 3-5 specific search queries that would find relevant B-roll images for this content.
|
125 |
+
For each query, specify the exact timestamp within the clip where it would be most relevant.
|
126 |
+
|
127 |
+
Focus on:
|
128 |
+
- Key people, places, or concepts mentioned
|
129 |
+
- Visual metaphors or illustrations
|
130 |
+
- Current events or topics discussed
|
131 |
+
- Products, companies, or brands mentioned
|
132 |
+
|
133 |
+
Return a JSON array with this structure:
|
134 |
+
[
|
135 |
+
{{
|
136 |
+
"query": "specific search query for Google Images",
|
137 |
+
"timestamp_in_clip": 5.2,
|
138 |
+
"relevance_reason": "why this image is relevant at this moment"
|
139 |
+
}}
|
140 |
+
]
|
141 |
+
|
142 |
+
Ensure timestamps are between 0 and {duration} seconds.
|
143 |
+
Make queries specific and descriptive for better image search results.
|
144 |
+
"""
|
145 |
+
|
146 |
+
try:
|
147 |
+
response = client.chat.completions.create(
|
148 |
+
model="gpt-4o",
|
149 |
+
messages=[
|
150 |
+
{
|
151 |
+
"role": "system",
|
152 |
+
"content": "You are an expert video editor specializing in finding relevant B-roll content for social media clips. Generate specific, searchable queries that will find compelling visual content.",
|
153 |
+
},
|
154 |
+
{"role": "user", "content": prompt},
|
155 |
+
],
|
156 |
+
temperature=0.3,
|
157 |
+
)
|
158 |
+
|
159 |
+
response_text = response.choices[0].message.content
|
160 |
+
|
161 |
+
# Extract JSON from response
|
162 |
+
if "```json" in response_text and "```" in response_text.split("```json", 1)[1]:
|
163 |
+
json_text = response_text.split("```json", 1)[1].split("```", 1)[0]
|
164 |
+
queries = json.loads(json_text)
|
165 |
+
else:
|
166 |
+
queries = json.loads(response_text)
|
167 |
+
|
168 |
+
print(f"Generated {len(queries)} B-roll queries")
|
169 |
+
return queries
|
170 |
+
|
171 |
+
except Exception as e:
|
172 |
+
print(f"Error generating B-roll queries: {str(e)}")
|
173 |
+
return []
|
174 |
+
|
175 |
+
|
176 |
+
def search_google_images(
|
177 |
+
query: str, api_key: str, search_engine_id: str, num_results: int = 3
|
178 |
+
) -> List[Dict]:
|
179 |
+
"""
|
180 |
+
Search Google Images using Custom Search API
|
181 |
+
|
182 |
+
Args:
|
183 |
+
query: Search query string
|
184 |
+
api_key: Google API key
|
185 |
+
search_engine_id: Google Custom Search Engine ID
|
186 |
+
num_results: Number of results to return
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
List of image result dictionaries
|
190 |
+
"""
|
191 |
+
try:
|
192 |
+
url = "https://www.googleapis.com/customsearch/v1"
|
193 |
+
params = {
|
194 |
+
"key": api_key,
|
195 |
+
"cx": search_engine_id,
|
196 |
+
"q": query,
|
197 |
+
"searchType": "image",
|
198 |
+
"num": num_results,
|
199 |
+
"safe": "active",
|
200 |
+
"imgSize": "large",
|
201 |
+
"imgType": "photo",
|
202 |
+
}
|
203 |
+
|
204 |
+
response = requests.get(url, params=params)
|
205 |
+
response.raise_for_status()
|
206 |
+
|
207 |
+
data = response.json()
|
208 |
+
results = []
|
209 |
+
|
210 |
+
for item in data.get("items", []):
|
211 |
+
result = {
|
212 |
+
"title": item.get("title", ""),
|
213 |
+
"image_url": item.get("link", ""),
|
214 |
+
"thumbnail_url": item.get("image", {}).get("thumbnailLink", ""),
|
215 |
+
"context_url": item.get("image", {}).get("contextLink", ""),
|
216 |
+
"width": item.get("image", {}).get("width", 0),
|
217 |
+
"height": item.get("image", {}).get("height", 0),
|
218 |
+
"file_size": item.get("image", {}).get("byteSize", 0),
|
219 |
+
}
|
220 |
+
results.append(result)
|
221 |
+
|
222 |
+
return results
|
223 |
+
|
224 |
+
except Exception as e:
|
225 |
+
print(f"Error searching Google Images for query '{query}': {str(e)}")
|
226 |
+
return []
|
227 |
+
|
228 |
+
|
229 |
+
def process_broll_generation(
|
230 |
+
transcript_data: List,
|
231 |
+
analysis_text: str,
|
232 |
+
google_api_key: str = None,
|
233 |
+
search_engine_id: str = None,
|
234 |
+
) -> List[Dict]:
|
235 |
+
"""
|
236 |
+
Main processing function to generate B-roll content for social media clips
|
237 |
+
|
238 |
+
Args:
|
239 |
+
transcript_data: Full transcript data from TranscriptProcessor (list of TranscriptSegment objects or dicts)
|
240 |
+
analysis_text: The formatted analysis output from get_initial_analysis
|
241 |
+
google_api_key: Google API key for image search
|
242 |
+
search_engine_id: Google Custom Search Engine ID
|
243 |
+
|
244 |
+
Returns:
|
245 |
+
List of processed clips with B-roll suggestions
|
246 |
+
"""
|
247 |
+
try:
|
248 |
+
print("Starting B-roll generation process")
|
249 |
+
print(f"Transcript data type: {type(transcript_data)}, length: {len(transcript_data) if transcript_data else 0}")
|
250 |
+
print(f"Analysis text length: {len(analysis_text) if analysis_text else 0}")
|
251 |
+
|
252 |
+
# Initialize OpenAI client
|
253 |
+
client = OpenAI()
|
254 |
+
|
255 |
+
# Extract clips from analysis text
|
256 |
+
social_clips = extract_clips_from_analysis(analysis_text)
|
257 |
+
|
258 |
+
if not social_clips:
|
259 |
+
print("No clips found in analysis text")
|
260 |
+
return []
|
261 |
+
|
262 |
+
processed_clips = []
|
263 |
+
|
264 |
+
for i, clip in enumerate(social_clips, 1):
|
265 |
+
print(f"Processing clip {i}/{len(social_clips)}: {clip.get('clip_title', 'Unknown')}")
|
266 |
+
start_time = clip.get("start_time", 0)
|
267 |
+
end_time = clip.get("end_time", 0)
|
268 |
+
|
269 |
+
# Extract relevant transcript content
|
270 |
+
transcript_content = extract_transcript_content(
|
271 |
+
transcript_data, start_time, end_time
|
272 |
+
)
|
273 |
+
|
274 |
+
if not transcript_content:
|
275 |
+
print(f"No transcript content found for clip {start_time}-{end_time}")
|
276 |
+
processed_clips.append(
|
277 |
+
{
|
278 |
+
**clip,
|
279 |
+
"broll_suggestions": [],
|
280 |
+
"error": "No transcript content found",
|
281 |
+
}
|
282 |
+
)
|
283 |
+
continue
|
284 |
+
|
285 |
+
# Generate B-roll queries
|
286 |
+
broll_queries = generate_broll_queries(client, transcript_content, clip)
|
287 |
+
|
288 |
+
broll_suggestions = []
|
289 |
+
|
290 |
+
for j, query_data in enumerate(broll_queries, 1):
|
291 |
+
print(f"Processing query {j}/{len(broll_queries)}: {query_data.get('query', 'Unknown')}")
|
292 |
+
query = query_data.get("query", "")
|
293 |
+
timestamp = query_data.get("timestamp_in_clip", 0)
|
294 |
+
reason = query_data.get("relevance_reason", "")
|
295 |
+
|
296 |
+
if not query:
|
297 |
+
continue
|
298 |
+
|
299 |
+
# Search Google Images if API is available
|
300 |
+
images = []
|
301 |
+
if google_api_key and search_engine_id:
|
302 |
+
print(f"Searching Google Images for: {query}")
|
303 |
+
images = search_google_images(
|
304 |
+
query, google_api_key, search_engine_id
|
305 |
+
)
|
306 |
+
print(f"Found {len(images)} images")
|
307 |
+
else:
|
308 |
+
print("Skipping Google Images search (no API credentials)")
|
309 |
+
|
310 |
+
broll_suggestion = {
|
311 |
+
"query": query,
|
312 |
+
"timestamp_in_clip": timestamp,
|
313 |
+
"absolute_timestamp": start_time + timestamp,
|
314 |
+
"relevance_reason": reason,
|
315 |
+
"images": images,
|
316 |
+
}
|
317 |
+
broll_suggestions.append(broll_suggestion)
|
318 |
+
|
319 |
+
processed_clip = {
|
320 |
+
**clip,
|
321 |
+
"transcript_content": transcript_content,
|
322 |
+
"broll_suggestions": broll_suggestions,
|
323 |
+
}
|
324 |
+
processed_clips.append(processed_clip)
|
325 |
+
print(f"Completed processing clip {i}, found {len(broll_suggestions)} suggestions")
|
326 |
+
|
327 |
+
print(f"B-roll generation complete. Processed {len(processed_clips)} clips")
|
328 |
+
return processed_clips
|
329 |
+
|
330 |
+
except Exception as e:
|
331 |
+
print(f"Error in process_broll_generation: {str(e)}")
|
332 |
+
raise e
|
333 |
+
|
334 |
+
|
335 |
+
def format_broll_output(processed_clips: List[Dict]) -> str:
|
336 |
+
"""
|
337 |
+
Format B-roll suggestions for display in the chat interface
|
338 |
+
|
339 |
+
Args:
|
340 |
+
processed_clips: List of processed clips with B-roll suggestions
|
341 |
+
|
342 |
+
Returns:
|
343 |
+
Formatted string for display
|
344 |
+
"""
|
345 |
+
if not processed_clips:
|
346 |
+
return "No B-roll suggestions generated."
|
347 |
+
|
348 |
+
output = ["🎬 B-Roll Suggestions\n"]
|
349 |
+
|
350 |
+
for i, clip in enumerate(processed_clips, 1):
|
351 |
+
title = clip.get("clip_title", "Unknown Clip")
|
352 |
+
start_time = clip.get("start_time", 0)
|
353 |
+
end_time = clip.get("end_time", 0)
|
354 |
+
|
355 |
+
# Format time display
|
356 |
+
start_min, start_sec = divmod(int(start_time), 60)
|
357 |
+
end_min, end_sec = divmod(int(end_time), 60)
|
358 |
+
|
359 |
+
output.append(f"\n{i}. {title}")
|
360 |
+
output.append(f"Time: {start_min:02d}:{start_sec:02d} - {end_min:02d}:{end_sec:02d}")
|
361 |
+
|
362 |
+
broll_suggestions = clip.get("broll_suggestions", [])
|
363 |
+
|
364 |
+
if not broll_suggestions:
|
365 |
+
output.append("No B-roll suggestions available for this clip.")
|
366 |
+
else:
|
367 |
+
for j, suggestion in enumerate(broll_suggestions, 1):
|
368 |
+
query = suggestion.get("query", "")
|
369 |
+
timestamp = suggestion.get("timestamp_in_clip", 0)
|
370 |
+
images = suggestion.get("images", [])
|
371 |
+
|
372 |
+
# Format timestamp within clip
|
373 |
+
ts_min, ts_sec = divmod(int(timestamp), 60)
|
374 |
+
|
375 |
+
output.append(f" Query {j}: {query}")
|
376 |
+
output.append(f" At: {ts_min:02d}:{ts_sec:02d}")
|
377 |
+
|
378 |
+
# Show top 2 image links only
|
379 |
+
if images:
|
380 |
+
top_images = images[:2]
|
381 |
+
for k, img in enumerate(top_images, 1):
|
382 |
+
img_url = img.get("image_url", "")
|
383 |
+
img_title = img.get("title", "Image")
|
384 |
+
if img_url:
|
385 |
+
output.append(f" Link {k}: {img_title[:50]} - {img_url}")
|
386 |
+
else:
|
387 |
+
output.append(" No images found for this query.")
|
388 |
+
|
389 |
+
output.append("")
|
390 |
+
|
391 |
+
return "\n".join(output)
|
utils.py
CHANGED
@@ -97,6 +97,19 @@ openai_tools = [
|
|
97 |
},
|
98 |
},
|
99 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
]
|
101 |
|
102 |
css = """
|
|
|
97 |
},
|
98 |
},
|
99 |
},
|
100 |
+
{
|
101 |
+
"type": "function",
|
102 |
+
"function": {
|
103 |
+
"name": "generate_broll_suggestions",
|
104 |
+
"description": "Generate B-roll image suggestions for social media clips. Call this function when user asks for B-roll images, video suggestions, or visual content for the clips.",
|
105 |
+
"parameters": {
|
106 |
+
"type": "object",
|
107 |
+
"properties": {},
|
108 |
+
"required": [],
|
109 |
+
"additionalProperties": False,
|
110 |
+
},
|
111 |
+
},
|
112 |
+
},
|
113 |
]
|
114 |
|
115 |
css = """
|