File size: 17,869 Bytes
09425e4
 
 
 
 
 
 
c7b90e4
09425e4
 
3c6a98c
09425e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7b90e4
09425e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7b90e4
09425e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7b90e4
09425e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deeeb78
 
 
 
09425e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import json
import os
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple

import gradio as gr
import requests
from bs4 import BeautifulSoup
from openai import OpenAI

street_interview = False


@dataclass
class TranscriptSegment:
    speaker_id: str
    start_time: float
    end_time: float
    text: str
    speaker_name: str = ""


class TranscriptProcessor:
    def __init__(self, transcript_file: str):
        self.transcript_file = transcript_file
        self.transcript_data = None
        self.formatted_transcript = None
        self.segments = []
        self.text_windows = []
        self.window_size = 2
        self.speaker_mapping = {}
        self._load_transcript()
        self._process_transcript()
        self.map_speaker_ids_to_names()

    def _load_transcript(self) -> None:
        """Load the transcript JSON file."""
        with open(self.transcript_file, "r") as f:
            self.transcript_data = json.load(f)

    def _format_time(self, seconds: float) -> str:
        """Convert seconds to formatted time string (MM:SS)."""
        minutes = int(seconds // 60)
        seconds = int(seconds % 60)
        return f"{minutes:02d}:{seconds:02d}"

    def _process_transcript(self) -> None:
        """Process the transcript into segments with speaker information and create a formatted version with timestamps."""
        results = self.transcript_data["results"]

        # Process into segments
        for segment in results["speaker_labels"]["segments"]:
            speaker_id = segment.get("speaker_label", segment.get("speakerlabel", ""))
            speaker_id = (
                speaker_id.replace("spk_", "").replace("spk", "") if speaker_id else ""
            )

            start_time = float(segment.get("start_time", 0))
            end_time = float(segment.get("end_time", 0))

            items = [
                item
                for item in results["items"]
                if "start_time" in item
                and float(item["start_time"]) >= start_time
                and float(item["start_time"]) < end_time
                and item["type"] == "pronunciation"
            ]

            words = [item["alternatives"][0]["content"] for item in items]
            if words:
                self.segments.append(
                    TranscriptSegment(
                        speaker_id=speaker_id,
                        start_time=start_time,
                        end_time=end_time,
                        text=" ".join(words),
                    )
                )

        formatted_segments = []
        for seg in self.segments:
            start_time_str = self._format_time(seg.start_time)
            end_time_str = self._format_time(seg.end_time)
            formatted_segments.append(
                f"time_stamp: {start_time_str}-{end_time_str}\n"
                f"spk {seg.speaker_id}: {seg.text}\n"
            )

        self.formatted_transcript = "\n".join(formatted_segments)

        # Create sliding windows of text for better matching
        for i in range(len(self.segments)):
            # Combine current segment with next segments within window
            window_segments = self.segments[i : i + self.window_size]
            combined_text = " ".join(seg.text for seg in window_segments)
            if window_segments:
                self.text_windows.append(
                    {
                        "text": combined_text,
                        "start_time": window_segments[0].start_time,
                        "end_time": window_segments[-1].end_time,
                    }
                )

    def map_speaker_ids_to_names(self) -> None:
        """Map speaker IDs to names based on introductions in the transcript."""
        try:

            transcript = self.formatted_transcript

            prompt = (
                "Given the following transcript where speakers are identified as spk 0, spk 1, spk 2, etc., please map each spk ID to the speaker's name based on their introduction in the transcript. If no name is introduced for a speaker, keep it as spk_id. Return the mapping as a JSON object in the format {'spk_0': 'Speaker Name', 'spk_1': 'Speaker Name', ...}\n\n"
                f"Transcript:\n{transcript}"
            )

            client = OpenAI()

            completion = client.chat.completions.create(
                model="gpt-4o-mini",
                messages=[
                    {"role": "system", "content": "You are a helpful assistant."},
                    {"role": "user", "content": prompt},
                ],
                temperature=0,
            )

            response_text = completion.choices[0].message.content.strip()
            try:
                self.speaker_mapping = json.loads(response_text)
            except json.JSONDecodeError:
                # extract left most and right most {}
                response_text = response_text[
                    response_text.find("{") : response_text.rfind("}") + 1
                ]
                try:
                    self.speaker_mapping = json.loads(response_text)
                except json.JSONDecodeError:
                    print("Error parsing speaker mapping JSON.")
                    self.speaker_mapping = {}
            for segment in self.segments:
                spk_id = f"spk_{segment.speaker_id}"
                speaker_name = self.speaker_mapping.get(spk_id, spk_id)
                segment.speaker_name = speaker_name

            # Recreate the formatted transcript with speaker names
            formatted_segments = []
            for seg in self.segments:
                start_time_str = self._format_time(seg.start_time)
                end_time_str = self._format_time(seg.end_time)
                formatted_segments.append(
                    f"time_stamp: {start_time_str}-{end_time_str}\n"
                    f"{seg.speaker_name}: {seg.text}\n"
                )
            self.formatted_transcript = "\n".join(formatted_segments)

        except Exception as e:
            print(f"Error mapping speaker IDs to names: {str(e)}")
            self.speaker_mapping = {}

    def correct_speaker_mapping_with_agenda(self, url: str) -> None:
        """Fetch agenda from a URL and correct the speaker mapping using OpenAI."""
        try:

            response = requests.get(url)
            response.raise_for_status()
            html_content = response.text

            # Parse the HTML to find the desired description
            soup = BeautifulSoup(html_content, "html.parser")
            description_tag = soup.find(
                "script", {"type": "application/ld+json"}
            )  # Find the ld+json metadata block
            agenda = ""

            if description_tag:
                # Extract the JSON content
                json_data = json.loads(description_tag.string)
                if "description" in json_data:
                    agenda = json_data["description"]
                else:
                    print("Agenda description not found in the JSON metadata.")
            else:
                print("No structured data (ld+json) found.")

            if not agenda:
                print("No agenda found in the structured metadata. Trying meta tags.")

                # Fallback: Use meta description if ld+json doesn't have it
                meta_description = soup.find("meta", {"name": "description"})
                agenda = meta_description["content"] if meta_description else ""

            if not agenda:
                print("No agenda found in any description tags.")
                return

            prompt = (
                f"Given the speaker mapping {self.speaker_mapping}, agenda:\n{agenda}, and the transcript: {self.formatted_transcript}\n\n"
                "Some speaker names in the mapping might have spelling errors or be incomplete."
                "Please correct the names based on the agenda. Return the corrected mapping in JSON format as "
                "{'spk_0': 'Correct Name', 'spk_1': 'Correct Name', ...}."
                "You should only update the name if the name sounds very similar, or there is a good spelling overlap/ The Speaker Introduction matches the description of the Talk from Agends. If the name is totally unrelated, keep the original name."
            )

            client = OpenAI()

            completion = client.chat.completions.create(
                model="gpt-4o-mini",
                messages=[
                    {"role": "system", "content": "You are a helpful assistant."},
                    {"role": "user", "content": prompt},
                ],
                temperature=0,
            )

            response_text = completion.choices[0].message.content.strip()
            try:
                corrected_mapping = json.loads(response_text)
            except:
                response_text = response_text[
                    response_text.find("{") : response_text.rfind("}") + 1
                ]
                try:
                    corrected_mapping = json.loads(response_text)
                except json.JSONDecodeError:
                    print(
                        "Error parsing corrected speaker mapping JSON, keeping the original mapping."
                    )
                    corrected_mapping = self.speaker_mapping
            # Update the speaker mapping with corrected names
            self.speaker_mapping = corrected_mapping
            print("Corrected Speaker Mapping:", self.speaker_mapping)

            # Update the transcript segments with corrected names
            for segment in self.segments:
                spk_id = f"spk_{segment.speaker_id}"
                segment.speaker_name = self.speaker_mapping.get(spk_id, spk_id)

            # Recreate the formatted transcript with corrected names
            formatted_segments = []
            for seg in self.segments:
                start_time_str = self._format_time(seg.start_time)
                end_time_str = self._format_time(seg.end_time)
                formatted_segments.append(
                    f"time_stamp: {start_time_str}-{end_time_str}\n"
                    f"{seg.speaker_name}: {seg.text}\n"
                )
            self.formatted_transcript = "\n".join(formatted_segments)

        except requests.exceptions.RequestException as e:
            print(f"Error fetching agenda from URL: {str(e)}")
        except Exception as e:
            print(f"Error correcting speaker mapping: {str(e)}")

    def get_transcript(self) -> str:
        """Return the formatted transcript with speaker names."""
        return self.formatted_transcript

    def get_transcript_data(self) -> Dict:
        """Return the raw transcript data."""
        return self.transcript_data


def setup_openai_key() -> None:
    """Set up OpenAI API key from file."""
    try:
        with open("api.key", "r") as f:
            os.environ["OPENAI_API_KEY"] = f.read().strip()
    except FileNotFoundError:
        print("Using ENV variable")
        # raise FileNotFoundError(
        #     "api.key file not found. Please create it with your OpenAI API key."
        # )


def get_initial_analysis(transcript_processor: TranscriptProcessor) -> str:
    """Perform initial analysis of the transcript using OpenAI."""
    try:
        transcript = transcript_processor.get_transcript()
        # print("Transcript is: ", transcript)
        client = OpenAI()
        if street_interview:
            prompt = f"""This is a transcript for a street interview. Transcript: {transcript}
In this street interview, the host asks multiple questions to the interviewees.
The interviewee can repeat a single answer multiple time to get the best take.
Your job is to find out the timestamp of the best answer given by the interviewee (Do not include the Question timestamp by interviwer in this). If there are multiple attempts for a question, best part is the last part of the question. If no question was asked but something is repeated, please include that in the answer as well
The way to know if there are multiple takes to a question is to see in the transcript if the same text is repeated, If not then number of takes is 1.
Question 1 should always be the introduction if the speaker has introduced themselves to find the best introduction time (Last timestamp is the best timestamp), Rest of questions should be in the order they were asked.
Return format is:
1. Question: question
Number of takes: number
Best Answer timestamp: start_time - end_time
You can visit the call segment on this URL: https://roll.ai/call_id/colab_id?starttime=start_time?endtime=end_time."
"""
        else:
            prompt = f"""Given the transcript {transcript}, For All the speakers, short list all people, news, events, trends, and source that are discussed by speakers along with the start time of that topic and end time of that topic from the transcript. Rank all topics based on what would make for the best social clips. I need atleast 3 topics per speaker.
You should mention the Speaker Name first, then 3 posts with their timestamps, and so on.
Return format is: Speaker Name\n1.Topic: topic, Start Time: start_time, End Time: end_time\n2...."""

        print(prompt)
        completion = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": prompt},
            ],
        )
        return completion.choices[0].message.content
    except Exception as e:
        print(f"Error in initial analysis: {str(e)}")
        return "An error occurred during initial analysis. Please check your API key and file path."


call_id = "20240226t210135"
colab_id = "1231412431212"


def generate_call_link(start_time: str) -> str:
    """Generate a link to the call at a specific timestamp."""
    formatted_time = start_time.replace(":", ".")
    return f"https://roll.ai/{call_id}/{colab_id}?t={formatted_time}"


def chat(
    message: str, chat_history: List, transcript_processor: TranscriptProcessor
) -> str:
    try:
        client = OpenAI()
        #         if street_interview:
        #             prompt = f"""You are a helpful assistant analyzing transcripts and generating timestamps and URL. Call ID is {call_id} and Colab ID is {colab_id}.
        # Transcript: {transcript_processor.get_transcript()}
        # If a user asks t
        # """
        # else:
        prompt = f"""You are a helpful assistant analyzing transcripts and generating timestamps and URL. Call ID is {call_id} and Colab ID is {colab_id}.
Transcript: {transcript_processor.get_transcript()}
If a user asks timestamps for a specific topic, find the start time and end time of that specific topic and return answer in the format: 'Timestamp: start_time - end_time'.
You can visit the call segment on this URL: https://roll.ai/call_id/colab_id?starttime=start_time?endtime=end_time."
If a user requests a link to a specific segment topic, generate a link to that segment using the following format: https://roll.ai/call_id/colab_id?starttime=start_time?endtime=end_time."""

        messages = [{"role": "system", "content": prompt}]

        for user_msg, assistant_msg in chat_history:
            if user_msg is not None:  # Skip the initial message where user_msg is None
                messages.append({"role": "user", "content": user_msg})
            if assistant_msg is not None:
                messages.append({"role": "assistant", "content": assistant_msg})

        # Add the current message
        messages.append({"role": "user", "content": message})

        completion = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=messages,
        )

        response = completion.choices[0].message

        return response.content

    except Exception as e:
        print(f"Unexpected error in chat: {str(e)}")
        import traceback

        print(f"Traceback: {traceback.format_exc()}")
        return "Sorry, there was an error processing your request."


def create_chat_interface(transcript_processor: TranscriptProcessor):
    """Create and configure the chat interface."""

    def respond(message: str, chat_history: List) -> Tuple[str, List]:
        if not message:
            return "", chat_history

        bot_message = chat(message, chat_history, transcript_processor)
        new_history = list(chat_history)
        new_history.append((message, bot_message))
        return "", new_history

    with gr.Blocks() as demo:
        chatbot = gr.Chatbot()
        msg = gr.Textbox()
        clear = gr.ClearButton([msg, chatbot])

        # Initialize with transcript analysis
        initial_analysis = get_initial_analysis(transcript_processor)

        def init_chat():
            return [(None, initial_analysis)]

        chatbot.value = init_chat()
        msg.submit(respond, [msg, chatbot], [msg, chatbot])

    return demo


def main():
    """Main function to run the application."""
    try:
        setup_openai_key()

        current_dir = os.path.dirname(os.path.abspath(__file__))
        transcript_file = os.path.join(current_dir, "step_take19AWS.json")

        if not os.path.exists(transcript_file):
            raise FileNotFoundError(
                "Transcript file not found. Please check the file path."
            )

        transcript_processor = TranscriptProcessor(transcript_file)
        transcript_processor.correct_speaker_mapping_with_agenda(
            "https://lu.ma/STEPSF24"
        )
        demo = create_chat_interface(transcript_processor)
        demo.launch(share=True)

    except Exception as e:
        print(f"Error starting application: {str(e)}")
        raise


if __name__ == "__main__":
    main()