File size: 25,522 Bytes
09425e4
 
 
65a422d
09425e4
 
 
c7b90e4
09425e4
 
 
 
 
 
 
 
 
 
 
 
 
21057c0
09425e4
21057c0
09425e4
 
 
 
 
21057c0
 
 
 
 
 
 
 
 
09425e4
c7b90e4
09425e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7b90e4
09425e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7b90e4
09425e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65a422d
09425e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deeeb78
 
 
 
09425e4
 
21057c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09425e4
 
 
 
23fc48e
 
 
 
7abd251
21057c0
09425e4
 
 
 
 
 
 
65a422d
09425e4
 
eb44fe1
21057c0
 
23fc48e
7abd251
09425e4
 
 
21057c0
 
 
 
d99a36b
21057c0
d99a36b
 
 
 
21057c0
09425e4
 
 
 
21057c0
 
 
 
09425e4
 
 
 
 
 
 
 
 
 
21057c0
 
 
 
 
 
 
09425e4
65a422d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09425e4
 
 
23fc48e
 
 
 
21057c0
 
 
65a422d
 
21057c0
eb44fe1
21057c0
 
 
23fc48e
7abd251
21057c0
09425e4
 
 
 
 
 
 
 
 
 
 
 
 
 
65a422d
09425e4
 
 
65a422d
 
 
 
 
 
 
 
09425e4
 
 
 
 
 
 
 
 
 
 
21057c0
09425e4
7080e6e
 
 
 
 
 
 
 
 
16f2269
 
 
 
 
 
 
 
 
 
 
 
8a76f56
 
 
7080e6e
65a422d
 
2dd4970
 
 
 
 
 
 
 
7080e6e
21057c0
 
 
 
 
 
65a422d
 
21057c0
 
 
 
 
 
 
9cff658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21057c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65a422d
21057c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09425e4
21057c0
 
 
 
 
 
 
 
 
 
 
 
 
09425e4
21057c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09425e4
21057c0
 
 
 
 
 
 
 
7abd251
 
21057c0
 
 
09425e4
 
 
 
 
 
 
 
21057c0
65a422d
09425e4
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
import json
import os
from dataclasses import dataclass
from typing import Dict, List

import gradio as gr
import requests
from bs4 import BeautifulSoup
from openai import OpenAI


@dataclass
class TranscriptSegment:
    speaker_id: str
    start_time: float
    end_time: float
    text: str
    speaker_name: str = ""


class TranscriptProcessor:
    def __init__(self, transcript_file: str = None, transcript_data: dict = None):
        self.transcript_file = transcript_file
        self.transcript_data = transcript_data
        self.formatted_transcript = None
        self.segments = []
        self.text_windows = []
        self.window_size = 2
        self.speaker_mapping = {}
        if self.transcript_file:
            self._load_transcript()
        elif self.transcript_data:
            pass  # transcript_data is already set
        else:
            raise ValueError(
                "Either transcript_file or transcript_data must be provided."
            )

        self._process_transcript()
        self.map_speaker_ids_to_names()

    def _load_transcript(self) -> None:
        """Load the transcript JSON file."""
        with open(self.transcript_file, "r") as f:
            self.transcript_data = json.load(f)

    def _format_time(self, seconds: float) -> str:
        """Convert seconds to formatted time string (MM:SS)."""
        minutes = int(seconds // 60)
        seconds = int(seconds % 60)
        return f"{minutes:02d}:{seconds:02d}"

    def _process_transcript(self) -> None:
        """Process the transcript into segments with speaker information and create a formatted version with timestamps."""
        results = self.transcript_data["results"]

        # Process into segments
        for segment in results["speaker_labels"]["segments"]:
            speaker_id = segment.get("speaker_label", segment.get("speakerlabel", ""))
            speaker_id = (
                speaker_id.replace("spk_", "").replace("spk", "") if speaker_id else ""
            )

            start_time = float(segment.get("start_time", 0))
            end_time = float(segment.get("end_time", 0))

            items = [
                item
                for item in results["items"]
                if "start_time" in item
                and float(item["start_time"]) >= start_time
                and float(item["start_time"]) < end_time
                and item["type"] == "pronunciation"
            ]

            words = [item["alternatives"][0]["content"] for item in items]
            if words:
                self.segments.append(
                    TranscriptSegment(
                        speaker_id=speaker_id,
                        start_time=start_time,
                        end_time=end_time,
                        text=" ".join(words),
                    )
                )

        formatted_segments = []
        for seg in self.segments:
            start_time_str = self._format_time(seg.start_time)
            end_time_str = self._format_time(seg.end_time)
            formatted_segments.append(
                f"time_stamp: {start_time_str}-{end_time_str}\n"
                f"spk {seg.speaker_id}: {seg.text}\n"
            )

        self.formatted_transcript = "\n".join(formatted_segments)

        # Create sliding windows of text for better matching
        for i in range(len(self.segments)):
            # Combine current segment with next segments within window
            window_segments = self.segments[i : i + self.window_size]
            combined_text = " ".join(seg.text for seg in window_segments)
            if window_segments:
                self.text_windows.append(
                    {
                        "text": combined_text,
                        "start_time": window_segments[0].start_time,
                        "end_time": window_segments[-1].end_time,
                    }
                )

    def map_speaker_ids_to_names(self) -> None:
        """Map speaker IDs to names based on introductions in the transcript."""
        try:

            transcript = self.formatted_transcript

            prompt = (
                "Given the following transcript where speakers are identified as spk 0, spk 1, spk 2, etc., please map each spk ID to the speaker's name based on their introduction in the transcript. If no name is introduced for a speaker, keep it as spk_id. Return the mapping as a JSON object in the format {'spk_0': 'Speaker Name', 'spk_1': 'Speaker Name', ...}\n\n"
                f"Transcript:\n{transcript}"
            )

            client = OpenAI()

            completion = client.chat.completions.create(
                model="gpt-4o-mini",
                messages=[
                    {"role": "system", "content": "You are a helpful assistant."},
                    {"role": "user", "content": prompt},
                ],
                temperature=0,
            )

            response_text = completion.choices[0].message.content.strip()
            try:
                self.speaker_mapping = json.loads(response_text)
            except json.JSONDecodeError:
                # extract left most and right most {}
                response_text = response_text[
                    response_text.find("{") : response_text.rfind("}") + 1
                ]
                try:
                    self.speaker_mapping = json.loads(response_text)
                except json.JSONDecodeError:
                    print("Error parsing speaker mapping JSON.")
                    self.speaker_mapping = {}
            for segment in self.segments:
                spk_id = f"spk_{segment.speaker_id}"
                speaker_name = self.speaker_mapping.get(spk_id, spk_id)
                segment.speaker_name = speaker_name

            # Recreate the formatted transcript with speaker names
            formatted_segments = []
            for seg in self.segments:
                start_time_str = self._format_time(seg.start_time)
                end_time_str = self._format_time(seg.end_time)
                formatted_segments.append(
                    f"time_stamp: {start_time_str}-{end_time_str}\n"
                    f"{seg.speaker_name}: {seg.text}\n"
                )
            self.formatted_transcript = "\n".join(formatted_segments)

        except Exception as e:
            print(f"Error mapping speaker IDs to names: {str(e)}")
            self.speaker_mapping = {}

    def correct_speaker_mapping_with_agenda(self, url: str) -> None:
        """Fetch agenda from a URL and correct the speaker mapping using OpenAI."""
        try:

            response = requests.get(url)
            response.raise_for_status()
            html_content = response.text

            # Parse the HTML to find the desired description
            soup = BeautifulSoup(html_content, "html.parser")
            description_tag = soup.find(
                "script", {"type": "application/ld+json"}
            )  # Find the ld+json metadata block
            agenda = ""

            if description_tag:
                # Extract the JSON content
                json_data = json.loads(description_tag.string)
                if "description" in json_data:
                    agenda = json_data["description"]
                else:
                    print("Agenda description not found in the JSON metadata.")
            else:
                print("No structured data (ld+json) found.")

            if not agenda:
                print("No agenda found in the structured metadata. Trying meta tags.")

                # Fallback: Use meta description if ld+json doesn't have it
                meta_description = soup.find("meta", {"name": "description"})
                agenda = meta_description["content"] if meta_description else ""

            if not agenda:
                print("No agenda found in any description tags.")
                return

            prompt = (
                f"Given the speaker mapping {self.speaker_mapping}, agenda:\n{agenda}, and the transcript: {self.formatted_transcript}\n\n"
                "Some speaker names in the mapping might have spelling errors or be incomplete."
                "Please correct the names based on the agenda. Return the corrected mapping in JSON format as "
                "{'spk_0': 'Correct Name', 'spk_1': 'Correct Name', ...}."
                "You should only update the name if the name sounds very similar, or there is a good spelling overlap/ The Speaker Introduction matches the description of the Talk from Agends. If the name is totally unrelated, keep the original name."
            )

            client = OpenAI()

            completion = client.chat.completions.create(
                model="gpt-4o-mini",
                messages=[
                    {"role": "system", "content": "You are a helpful assistant."},
                    {"role": "user", "content": prompt},
                ],
                temperature=0,
            )

            response_text = completion.choices[0].message.content.strip()
            try:
                corrected_mapping = json.loads(response_text)
            except Exception:
                response_text = response_text[
                    response_text.find("{") : response_text.rfind("}") + 1
                ]
                try:
                    corrected_mapping = json.loads(response_text)
                except json.JSONDecodeError:
                    print(
                        "Error parsing corrected speaker mapping JSON, keeping the original mapping."
                    )
                    corrected_mapping = self.speaker_mapping
            # Update the speaker mapping with corrected names
            self.speaker_mapping = corrected_mapping
            print("Corrected Speaker Mapping:", self.speaker_mapping)

            # Update the transcript segments with corrected names
            for segment in self.segments:
                spk_id = f"spk_{segment.speaker_id}"
                segment.speaker_name = self.speaker_mapping.get(spk_id, spk_id)

            # Recreate the formatted transcript with corrected names
            formatted_segments = []
            for seg in self.segments:
                start_time_str = self._format_time(seg.start_time)
                end_time_str = self._format_time(seg.end_time)
                formatted_segments.append(
                    f"time_stamp: {start_time_str}-{end_time_str}\n"
                    f"{seg.speaker_name}: {seg.text}\n"
                )
            self.formatted_transcript = "\n".join(formatted_segments)

        except requests.exceptions.RequestException as e:
            print(f"Error fetching agenda from URL: {str(e)}")
        except Exception as e:
            print(f"Error correcting speaker mapping: {str(e)}")

    def get_transcript(self) -> str:
        """Return the formatted transcript with speaker names."""
        return self.formatted_transcript

    def get_transcript_data(self) -> Dict:
        """Return the raw transcript data."""
        return self.transcript_data


def setup_openai_key() -> None:
    """Set up OpenAI API key from file."""
    try:
        with open("api.key", "r") as f:
            os.environ["OPENAI_API_KEY"] = f.read().strip()
    except FileNotFoundError:
        print("Using ENV variable")
        # raise FileNotFoundError(
        #     "api.key file not found. Please create it with your OpenAI API key."
        # )


def get_transcript_for_url(url: str) -> dict:
    """
    This function fetches the transcript data for a signed URL.
    If the URL results in a direct download, it processes the downloaded content.

    :param url: Signed URL for the JSON file
    :return: Parsed JSON data as a dictionary
    """
    headers = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
    }

    try:
        response = requests.get(url, headers=headers)
        response.raise_for_status()

        if "application/json" in response.headers.get("Content-Type", ""):
            return response.json()  # Parse and return JSON directly

        # If not JSON, assume it's a file download (e.g., content-disposition header)
        content_disposition = response.headers.get("Content-Disposition", "")
        if "attachment" in content_disposition:
            # Process the content as JSON
            return json.loads(response.content)

        return json.loads(response.content)

    except requests.exceptions.HTTPError as http_err:
        print(f"HTTP error occurred: {http_err}")
    except requests.exceptions.RequestException as req_err:
        print(f"Request error occurred: {req_err}")
    except json.JSONDecodeError as json_err:
        print(f"JSON decoding error: {json_err}")

    return {}


def get_initial_analysis(
    transcript_processor: TranscriptProcessor,
    cid,
    rsid,
    origin,
    ct,
) -> str:
    """Perform initial analysis of the transcript using OpenAI."""
    try:
        transcript = transcript_processor.get_transcript()
        client = OpenAI()
        if "localhost" in origin:
            link_start = "http"
        else:
            link_start = "https"

        if ct == "si":  # street interview
            prompt = f"""This is a transcript for a street interview. Transcript: {transcript}
In this street interview, the host asks multiple questions to the interviewees.
The interviewee can repeat a single answer multiple time to get the best take.
Your job is to find out the timestamp of the best answer given by the interviewee (Do not include the Question timestamp by interviwer in this). If there are multiple attempts for a question, best part is the last part of the question. If no question was asked but something is repeated, please include that in the answer as well
The way to know if there are multiple takes to a question is to see in the transcript if the same text is repeated, If not then number of takes is 1.
Question 1 should always be the introduction if the speaker has introduced themselves to find the best introduction time (Last timestamp is the best timestamp), Rest of questions should be in the order they were asked.
Return format is:
Call ID is: {{cid}}, Recording Session ID is: {{rsid}}, Origin is: {{origin}}, Call Type is: {{ct}}
1. Question: question
Number of takes: number
Best Answer timestamp: [Timestamp: start_time - end_time]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{start_time_in_sec}}&et={{end_time_in_sec}}"').
For Example:
If the start time is 10:13 and end time is 10:18, the url will be:
{link_start}://roll.ai/colab/1234aq_12314/51234151?st=613&et=618
In the URL, make sure that after RSID there is ? and then rest of the fields are added via &.
"""
        else:
            prompt = f"""Given the transcript {transcript}, For All the speakers, short list all people, news, events, trends, and source that are discussed by speakers along with the start time of that topic and end time of that topic from the transcript. Rank all topics based on what would make for the best social clips. I need atleast 3 topics per speaker.
You should mention the Speaker Name first, then atleast 3 posts with their timestamps, and so on.
Return format is:
Speaker Name
1.Topic: topic,
[Timestamp: start_time - end_time]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{start_time_in_sec}}&et={{end_time_in_sec}}"').
2....
For Example:
If the start time is 10:13 and end time is 10:18, the url will be:
{link_start}://roll.ai/colab/1234aq_12314/51234151?st=613&et=618
In the URL, make sure that after RSID there is ? and then rest of the fields are added via &.
"""

        completion = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=[
                {
                    "role": "system",
                    "content": f"You are a helpful assistant who is analyzing the transcript. The transcript is for Call ID: {cid}, Session ID: {rsid}, Origin: {origin}, Call Type: {ct}.",
                },
                {"role": "user", "content": prompt},
            ],
        )
        return completion.choices[0].message.content
    except Exception as e:
        print(f"Error in initial analysis: {str(e)}")
        return "An error occurred during initial analysis. Please check your API key and file path."


def chat(
    message: str,
    chat_history: List,
    transcript_processor: TranscriptProcessor,
    cid,
    rsid,
    origin,
    ct,
) -> str:
    tools = [
        {
            "type": "function",
            "function": {
                "name": "correct_speaker_name_with_url",
                "description": "If a User provides a link to Agenda file, call the correct_speaker_name_with_url function to correct the speaker names based on the url, i.e if a user says 'Here is the Luma link for the event' and provides a link to the event, the function will correct the speaker names based on the event.",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "url": {
                            "type": "string",
                            "description": "The url to the agenda.",
                        },
                    },
                    "required": ["url"],
                    "additionalProperties": False,
                },
            },
        }
    ]

    try:
        client = OpenAI()

        if "localhost" in origin:
            link_start = "http"
        else:
            link_start = "https"
        prompt = f"""You are a helpful assistant analyzing transcripts and generating timestamps and URL. Call ID is {cid}, Session ID is {rsid}, origin is {origin}, Call Type is {ct}.
Transcript:\n{transcript_processor.get_transcript()}
If a user asks timestamps for a specific topic, find the start time and end time of that specific topic and return answer in the format: 
If the user provides a link to the agenda, use the correct_speaker_name_with_url function to correct the speaker names based on the agenda.

Answer format:
Topic: Heading [Timestamp: start_time - end_time]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{start_time_in_sec}}&et={{end_time_in_sec}}"').

For Example:
If the start time is 10:13 and end time is 10:18, the url will be:
{link_start}://roll.ai/colab/1234aq_12314/51234151?st=613&et=618
In the URL, make sure that after RSID there is ? and then rest of the fields are added via &.
"""
        messages = [{"role": "system", "content": prompt}]

        for user_msg, assistant_msg in chat_history:
            if user_msg is not None:  # Skip the initial message where user_msg is None
                messages.append({"role": "user", "content": user_msg})
            if assistant_msg is not None:
                messages.append({"role": "assistant", "content": assistant_msg})

        # Add the current message
        messages.append({"role": "user", "content": message})

        completion = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=messages,
            tools=tools,
        )

        response = completion.choices[0].message
        if response.function_call:
            args = json.loads(response.function_call.arguments)
            url = args.get("url", None)
            if url:
                transcript_processor.correct_speaker_mapping_with_agenda(url)
                return "Speaker names corrected based on the agenda."
            else:
                return "No URL provided for correcting speaker names."

        return response.content

    except Exception as e:
        print(f"Unexpected error in chat: {str(e)}")
        import traceback

        print(f"Traceback: {traceback.format_exc()}")
        return "Sorry, there was an error processing your request."


def create_chat_interface():
    """Create and configure the chat interface."""
    css = """
    .gradio-container {

        padding-top: 0px !important;
        padding-left: 0px !important;
        padding-right: 0px !important;
        padding: 0px !important;
        margin: 0px !important;
    }
    #component-0 {
        gap: 0px !important;
    }

    .icon-button-wrapper{
        display: none !important;
    }


    footer {
        display: none !important;
    }
    #chatbot_box{
        flex-grow: 1 !important;
    }
    """

    with gr.Blocks(fill_height=True, fill_width=True, css=css, js="index.js") as demo:
        chatbot = gr.Chatbot(
            elem_id="chatbot_box",
            layout="bubble",
            show_label=False,
            show_share_button=False,
            show_copy_all_button=False,
            show_copy_button=False,
        )
        msg = gr.Textbox(elem_id="chatbot_textbox", show_label=False)
        transcript_processor_state = gr.State()  # maintain state of imp things
        call_id_state = gr.State()
        colab_id_state = gr.State()
        origin_state = gr.State()
        ct_state = gr.State()
        turl_state = gr.State()
        iframe_html = "<iframe id='link-frame'></iframe>"
        gr.HTML(value=iframe_html)  # Add iframe to the UI

        def on_app_load(request: gr.Request):
            cid = request.query_params.get("cid", None)
            rsid = request.query_params.get("rsid", None)
            origin = request.query_params.get("origin", None)
            ct = request.query_params.get("ct", None)
            turl = request.query_params.get("turl", None)
            required_params = ["cid", "rsid", "origin", "ct", "turl"]
            missing_params = [
                param
                for param in required_params
                if request.query_params.get(param) is None
            ]
            if missing_params:
                error_message = (
                    f"Missing required parameters: {', '.join(missing_params)}"
                )
                chatbot_value = [(None, error_message)]
                return [
                    chatbot_value,
                    None,
                    None,
                    None,
                    None,
                    None,
                    None,
                ]

            # if any param is missing, return error
            if not cid or not rsid or not origin or not ct or not turl:
                error_message = "Error processing"
                chatbot_value = [(None, error_message)]
                return [
                    chatbot_value,
                    None,
                    None,
                    None,
                    None,
                    None,
                    None,
                ]

            try:
                transcript_data = get_transcript_for_url(turl)
                transcript_processor = TranscriptProcessor(
                    transcript_data=transcript_data
                )
                initial_analysis = get_initial_analysis(
                    transcript_processor, cid, rsid, origin, ct
                )

                chatbot_value = [
                    (None, initial_analysis)
                ]  # initialized with initial analysis and assistant is None

                return [
                    chatbot_value,
                    transcript_processor,
                    cid,
                    rsid,
                    origin,
                    ct,
                    turl,
                ]
            except Exception as e:
                error_message = f"Error processing call_id {cid}: {str(e)}"
                chatbot_value = [(None, error_message)]
                return [
                    chatbot_value,
                    None,
                    None,
                    None,
                    None,
                    None,
                    None,
                ]

        demo.load(
            on_app_load,
            inputs=None,
            outputs=[
                chatbot,
                transcript_processor_state,
                call_id_state,
                colab_id_state,
                origin_state,
                ct_state,
                turl_state,
            ],
        )

        def respond(
            message: str,
            chat_history: List,
            transcript_processor,
            cid,
            rsid,
            origin,
            ct,
        ):
            if not transcript_processor:
                bot_message = "Transcript processor not initialized."
            else:
                bot_message = chat(
                    message,
                    chat_history,
                    transcript_processor,
                    cid,
                    rsid,
                    origin,
                    ct,
                )
            chat_history.append((message, bot_message))
            return "", chat_history

        msg.submit(
            respond,
            [
                msg,
                chatbot,
                transcript_processor_state,
                call_id_state,
                colab_id_state,
                origin_state,
                ct_state,
            ],
            [msg, chatbot],
        )

    return demo


def main():
    """Main function to run the application."""
    try:
        setup_openai_key()
        demo = create_chat_interface()
        demo.launch(debug=True)
    except Exception as e:
        print(f"Error starting application: {str(e)}")
        raise


if __name__ == "__main__":
    main()