ChatWithTranscriptStaging / crop_utils.py
AhmadMustafa's picture
update: read env variables
7022d7f
raw
history blame
15.6 kB
import base64
import os
from io import BytesIO
import cv2
import gradio as gr
import numpy as np
import pyrebase
import requests
from openai import OpenAI
from PIL import Image, ImageDraw, ImageFont
from ultralytics import YOLO
from prompts import remove_unwanted_prompt
def get_middle_thumbnail(input_image: Image, grid_size=(10, 10), padding=3):
"""
Extract the middle thumbnail from a sprite sheet, handling different aspect ratios
and removing padding.
Args:
input_image: PIL Image
grid_size: Tuple of (columns, rows)
padding: Number of padding pixels on each side (default 3)
Returns:
PIL.Image: The middle thumbnail image with padding removed
"""
sprite_sheet = input_image
# Calculate thumbnail dimensions based on actual sprite sheet size
sprite_width, sprite_height = sprite_sheet.size
thumb_width_with_padding = sprite_width // grid_size[0]
thumb_height_with_padding = sprite_height // grid_size[1]
# Remove padding to get actual image dimensions
thumb_width = thumb_width_with_padding - (2 * padding) # 726 - 6 = 720
thumb_height = thumb_height_with_padding - (2 * padding) # varies based on input
# Calculate the middle position
total_thumbs = grid_size[0] * grid_size[1]
middle_index = total_thumbs // 2
# Calculate row and column of middle thumbnail
middle_row = middle_index // grid_size[0]
middle_col = middle_index % grid_size[0]
# Calculate pixel coordinates for cropping, including padding offset
left = (middle_col * thumb_width_with_padding) + padding
top = (middle_row * thumb_height_with_padding) + padding
right = left + thumb_width # Don't add padding here
bottom = top + thumb_height # Don't add padding here
# Crop and return the middle thumbnail
middle_thumb = sprite_sheet.crop((left, top, right, bottom))
return middle_thumb
def get_person_bbox(frame, model):
"""Detect person and return the largest bounding box"""
results = model(frame, classes=[0]) # class 0 is person in COCO
if not results or len(results[0].boxes) == 0:
return None
# Get all person boxes
boxes = results[0].boxes.xyxy.cpu().numpy()
# Calculate areas to find the largest person
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
largest_idx = np.argmax(areas)
return boxes[largest_idx]
def generate_crops(frame):
"""Generate both 16:9 and 9:16 crops based on person detection"""
# Load YOLO model
model = YOLO("yolo11n.pt")
# Convert PIL Image to cv2 format if needed
if isinstance(frame, Image.Image):
frame = cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR)
original_height, original_width = frame.shape[:2]
bbox = get_person_bbox(frame, model)
if bbox is None:
return None, None
# Extract coordinates
x1, y1, x2, y2 = map(int, bbox)
person_height = y2 - y1
person_width = x2 - x1
person_center_x = (x1 + x2) // 2
person_center_y = (y1 + y2) // 2
# Generate 16:9 crop (focus on upper body)
aspect_ratio_16_9 = 16 / 9
crop_width_16_9 = min(original_width, int(person_height * aspect_ratio_16_9))
crop_height_16_9 = min(original_height, int(crop_width_16_9 / aspect_ratio_16_9))
# For 16:9, center horizontally and align top with person's top
x1_16_9 = max(0, person_center_x - crop_width_16_9 // 2)
x2_16_9 = min(original_width, x1_16_9 + crop_width_16_9)
y1_16_9 = max(0, y1) # Start from person's top
y2_16_9 = min(original_height, y1_16_9 + crop_height_16_9)
# Adjust if exceeding boundaries
if x2_16_9 > original_width:
x1_16_9 = original_width - crop_width_16_9
x2_16_9 = original_width
if y2_16_9 > original_height:
y1_16_9 = original_height - crop_height_16_9
y2_16_9 = original_height
# Generate 9:16 crop (full body)
aspect_ratio_9_16 = 9 / 16
crop_width_9_16 = min(original_width, int(person_height * aspect_ratio_9_16))
crop_height_9_16 = min(original_height, int(crop_width_9_16 / aspect_ratio_9_16))
# For 9:16, center both horizontally and vertically
x1_9_16 = max(0, person_center_x - crop_width_9_16 // 2)
x2_9_16 = min(original_width, x1_9_16 + crop_width_9_16)
y1_9_16 = max(0, person_center_y - crop_height_9_16 // 2)
y2_9_16 = min(original_height, y1_9_16 + crop_height_9_16)
# Adjust if exceeding boundaries
if x2_9_16 > original_width:
x1_9_16 = original_width - crop_width_9_16
x2_9_16 = original_width
if y2_9_16 > original_height:
y1_9_16 = original_height - crop_height_9_16
y2_9_16 = original_height
# Create crops
crop_16_9 = frame[y1_16_9:y2_16_9, x1_16_9:x2_16_9]
crop_9_16 = frame[y1_9_16:y2_9_16, x1_9_16:x2_9_16]
# Resize to standard dimensions
crop_16_9 = cv2.resize(crop_16_9, (426, 240)) # 16:9 aspect ratio
crop_9_16 = cv2.resize(crop_9_16, (240, 426)) # 9:16 aspect ratio
return crop_16_9, crop_9_16
def visualize_crops(image, bbox, crops_info):
"""
Visualize original bbox and calculated crops
bbox: [x1, y1, x2, y2]
crops_info: dict with 'crop_16_9' and 'crop_9_16' coordinates
"""
viz = image.copy()
# Draw original person bbox in blue
cv2.rectangle(
viz, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (255, 0, 0), 2
)
# Draw 16:9 crop in green
crop_16_9 = crops_info["crop_16_9"]
cv2.rectangle(
viz,
(int(crop_16_9["x1"]), int(crop_16_9["y1"])),
(int(crop_16_9["x2"]), int(crop_16_9["y2"])),
(0, 255, 0),
2,
)
# Draw 9:16 crop in red
crop_9_16 = crops_info["crop_9_16"]
cv2.rectangle(
viz,
(int(crop_9_16["x1"]), int(crop_9_16["y1"])),
(int(crop_9_16["x2"]), int(crop_9_16["y2"])),
(0, 0, 255),
2,
)
return viz
def encode_image_to_base64(image: Image.Image, format: str = "JPEG") -> str:
"""
Convert a PIL image to a base64 string.
Args:
image: PIL Image object
format: Image format to use for encoding (default: PNG)
Returns:
Base64 encoded string of the image
"""
buffered = BytesIO()
image.save(buffered, format=format)
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def add_top_numbers(
input_image,
num_divisions=20,
margin=90,
font_size=120,
dot_spacing=20,
):
"""
Add numbered divisions across the top and bottom of any image with dotted vertical lines.
Args:
input_image (Image): PIL Image
num_divisions (int): Number of divisions to create
margin (int): Size of margin in pixels for numbers
font_size (int): Font size for numbers
dot_spacing (int): Spacing between dots in pixels
"""
# Load the image
original_image = input_image
# Create new image with extra space for numbers on top and bottom
new_width = original_image.width
new_height = original_image.height + (
2 * margin
) # Add margin to both top and bottom
new_image = Image.new("RGB", (new_width, new_height), "white")
# Paste original image in the middle
new_image.paste(original_image, (0, margin))
# Initialize drawing context
draw = ImageDraw.Draw(new_image)
try:
font = ImageFont.truetype("arial.ttf", font_size)
except OSError:
print("Using default font")
font = ImageFont.load_default(size=font_size)
# Calculate division width
division_width = original_image.width / num_divisions
# Draw division numbers and dotted lines
for i in range(num_divisions):
x = (i * division_width) + (division_width / 2)
# Draw number at top
draw.text((x, margin // 2), str(i + 1), fill="black", font=font, anchor="mm")
# Draw number at bottom
draw.text(
(x, new_height - (margin // 2)),
str(i + 1),
fill="black",
font=font,
anchor="mm",
)
# Draw dotted line from top margin to bottom margin
y_start = margin
y_end = new_height - margin
# Draw dots with specified spacing
current_y = y_start
while current_y < y_end:
draw.circle(
[x - 1, current_y - 1, x + 1, current_y + 1],
fill="black",
width=5,
radius=3,
)
current_y += dot_spacing
return new_image
def crop_and_draw_divisions(
input_image,
left_division,
right_division,
num_divisions=20,
line_color=(255, 0, 0),
line_width=2,
head_margin_percent=0.1,
):
"""
Create both 9:16 and 16:9 crops and draw guide lines.
Args:
input_image (Image): PIL Image
left_division (int): Left-side division number (1-20)
right_division (int): Right-side division number (1-20)
num_divisions (int): Total number of divisions (default=20)
line_color (tuple): RGB color tuple for lines (default: red)
line_width (int): Width of lines in pixels (default: 2)
head_margin_percent (float): Percentage margin above head (default: 0.1)
Returns:
tuple: (cropped_image_16_9, image_with_lines, cropped_image_9_16)
"""
yolo_model = YOLO("yolo11n.pt")
# Calculate division width and boundaries
division_width = input_image.width / num_divisions
left_boundary = (left_division - 1) * division_width
right_boundary = right_division * division_width
# First get the 9:16 crop
cropped_image_9_16 = input_image.crop(
(left_boundary, 0, right_boundary, input_image.height)
)
# Run YOLO on the 9:16 crop to get person bbox
bbox = yolo_model(cropped_image_9_16, classes=[0])[0].boxes.xyxy.cpu().numpy()[0]
x1, y1, x2, y2 = bbox
# Calculate top boundary with head margin
head_margin = (y2 - y1) * head_margin_percent
top_boundary = max(0, y1 - head_margin)
# Calculate 16:9 dimensions based on the width between divisions
crop_width = right_boundary - left_boundary
crop_height_16_9 = int(crop_width * 9 / 16)
# Calculate bottom boundary for 16:9
bottom_boundary = min(input_image.height, top_boundary + crop_height_16_9)
# Create 16:9 crop from original image
cropped_image_16_9 = input_image.crop(
(left_boundary, top_boundary, right_boundary, bottom_boundary)
)
# Draw guide lines for both crops on original image
image_with_lines = input_image.copy()
draw = ImageDraw.Draw(image_with_lines)
# Draw vertical lines (for both crops)
draw.line(
[(left_boundary, 0), (left_boundary, input_image.height)],
fill=line_color,
width=line_width,
)
draw.line(
[(right_boundary, 0), (right_boundary, input_image.height)],
fill=line_color,
width=line_width,
)
# Draw horizontal lines (for 16:9 crop)
draw.line(
[(left_boundary, top_boundary), (right_boundary, top_boundary)],
fill=line_color,
width=line_width,
)
draw.line(
[(left_boundary, bottom_boundary), (right_boundary, bottom_boundary)],
fill=line_color,
width=line_width,
)
return cropped_image_16_9, image_with_lines, cropped_image_9_16
def analyze_image(numbered_input_image: Image, prompt, input_image):
"""
Perform inference on an image using GPT-4V.
Args:
numbered_input_image (Image): PIL Image
prompt (str): The prompt/question about the image
input_image (Image): input image without numbers
Returns:
str: The model's response
"""
client = OpenAI()
base64_image = encode_image_to_base64(numbered_input_image, format="JPEG")
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
],
}
]
response = client.chat.completions.create(
model="gpt-4o", messages=messages, max_tokens=300
)
messages.extend(
[
{"role": "assistant", "content": response.choices[0].message.content},
{
"role": "user",
"content": "please return the response in the json with keys left_row and right_row",
},
],
)
response = (
client.chat.completions.create(model="gpt-4o", messages=messages)
.choices[0]
.message.content
)
left_index = response.find("{")
right_index = response.rfind("}")
try:
if left_index != -1 and right_index != -1:
response_json = eval(response[left_index : right_index + 1])
cropped_image_16_9, image_with_lines, cropped_image_9_16 = (
crop_and_draw_divisions(
input_image=input_image,
left_division=response_json["left_row"],
right_division=response_json["right_row"],
)
)
except Exception as e:
print(e)
return input_image, input_image, input_image
return cropped_image_16_9, image_with_lines, cropped_image_9_16
def get_sprite_firebase(cid, rsid, uid):
config = {
"apiKey": f"{os.getenv('FIREBASE_API_KEY')}",
"authDomain": f"{os.getenv('FIREBASE_AUTH_DOMAIN')}",
"databaseURL": f"{os.getenv('FIREBASE_DATABASE_URL')}",
"projectId": f"{os.getenv('FIREBASE_PROJECT_ID')}",
"storageBucket": f"{os.getenv('FIREBASE_STORAGE_BUCKET')}",
"messagingSenderId": f"{os.getenv('FIREBASE_MESSAGING_SENDER_ID')}",
"appId": f"{os.getenv('FIREBASE_APP_ID')}",
"measurementId": f"{os.getenv('FIREBASE_MEASUREMENT_ID')}",
}
firebase = pyrebase.initialize_app(config)
db = firebase.database()
account_id = os.getenv("ROLL_ACCOUNT")
COLLAB_EDIT_LINK = "collab_sprite_link_handler"
path = f"{account_id}/{COLLAB_EDIT_LINK}/{uid}/{cid}/{rsid}"
data = db.child(path).get()
return data.val()
def get_image_crop(cid=None, rsid=None, uid=None):
"""Function that returns both 16:9 and 9:16 crops"""
image_paths = get_sprite_firebase(cid, rsid, uid)
input_images = []
mid_images = []
cropped_image_16_9s = []
images_with_lines = []
cropped_image_9_16s = []
for image_path in image_paths:
response = requests.get(image_path)
input_image = Image.open(BytesIO(response.content))
input_images.append(input_image)
# Get the middle thumbnail
mid_image = get_middle_thumbnail(input_image)
mid_images.append(mid_image)
numbered_mid_image = add_top_numbers(
input_image=mid_image,
num_divisions=20,
margin=50,
font_size=30,
dot_spacing=20,
)
cropped_image_16_9, image_with_lines, cropped_image_9_16 = analyze_image(
numbered_mid_image, remove_unwanted_prompt(2), mid_image
)
cropped_image_16_9s.append(cropped_image_16_9)
images_with_lines.append(image_with_lines)
cropped_image_9_16s.append(cropped_image_9_16)
return gr.Gallery(
[
*input_images,
*mid_images,
*cropped_image_16_9s,
*images_with_lines,
*cropped_image_9_16s,
]
)