AhmadMustafa commited on
Commit
72d1759
·
1 Parent(s): 9f1e459

update: show crops

Browse files
Files changed (3) hide show
  1. crop_utils.py +505 -0
  2. prompts.py +157 -0
  3. utils.py +7 -0
crop_utils.py ADDED
@@ -0,0 +1,505 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import os
3
+ from io import BytesIO
4
+
5
+ import cv2
6
+ import gradio as gr
7
+ import numpy as np
8
+ import pyrebase
9
+ import requests
10
+ from openai import OpenAI
11
+ from PIL import Image, ImageDraw, ImageFont
12
+ from ultralytics import YOLO
13
+
14
+ from prompts import remove_unwanted_prompt
15
+
16
+
17
+ def get_middle_thumbnail(input_image: Image, grid_size=(10, 10), padding=3):
18
+ """
19
+ Extract the middle thumbnail from a sprite sheet, handling different aspect ratios
20
+ and removing padding.
21
+
22
+ Args:
23
+ input_image: PIL Image
24
+ grid_size: Tuple of (columns, rows)
25
+ padding: Number of padding pixels on each side (default 3)
26
+
27
+ Returns:
28
+ PIL.Image: The middle thumbnail image with padding removed
29
+ """
30
+ sprite_sheet = input_image
31
+
32
+ # Calculate thumbnail dimensions based on actual sprite sheet size
33
+ sprite_width, sprite_height = sprite_sheet.size
34
+ thumb_width_with_padding = sprite_width // grid_size[0]
35
+ thumb_height_with_padding = sprite_height // grid_size[1]
36
+
37
+ # Remove padding to get actual image dimensions
38
+ thumb_width = thumb_width_with_padding - (2 * padding) # 726 - 6 = 720
39
+ thumb_height = thumb_height_with_padding - (2 * padding) # varies based on input
40
+
41
+ # Calculate the middle position
42
+ total_thumbs = grid_size[0] * grid_size[1]
43
+ middle_index = total_thumbs // 2
44
+
45
+ # Calculate row and column of middle thumbnail
46
+ middle_row = middle_index // grid_size[0]
47
+ middle_col = middle_index % grid_size[0]
48
+
49
+ # Calculate pixel coordinates for cropping, including padding offset
50
+ left = (middle_col * thumb_width_with_padding) + padding
51
+ top = (middle_row * thumb_height_with_padding) + padding
52
+ right = left + thumb_width # Don't add padding here
53
+ bottom = top + thumb_height # Don't add padding here
54
+
55
+ # Crop and return the middle thumbnail
56
+ middle_thumb = sprite_sheet.crop((left, top, right, bottom))
57
+ return middle_thumb
58
+
59
+
60
+ def get_person_bbox(frame, model):
61
+ """Detect person and return the largest bounding box"""
62
+ results = model(frame, classes=[0]) # class 0 is person in COCO
63
+
64
+ if not results or len(results[0].boxes) == 0:
65
+ return None
66
+
67
+ # Get all person boxes
68
+ boxes = results[0].boxes.xyxy.cpu().numpy()
69
+ # Calculate areas to find the largest person
70
+ areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
71
+ largest_idx = np.argmax(areas)
72
+
73
+ return boxes[largest_idx]
74
+
75
+
76
+ def generate_crops(frame):
77
+ """Generate both 16:9 and 9:16 crops based on person detection"""
78
+ # Load YOLO model
79
+ model = YOLO("yolo11n.pt")
80
+
81
+ # Convert PIL Image to cv2 format if needed
82
+ if isinstance(frame, Image.Image):
83
+ frame = cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR)
84
+
85
+ original_height, original_width = frame.shape[:2]
86
+ bbox = get_person_bbox(frame, model)
87
+
88
+ if bbox is None:
89
+ return None, None
90
+
91
+ # Extract coordinates
92
+ x1, y1, x2, y2 = map(int, bbox)
93
+ person_height = y2 - y1
94
+ person_width = x2 - x1
95
+ person_center_x = (x1 + x2) // 2
96
+ person_center_y = (y1 + y2) // 2
97
+
98
+ # Generate 16:9 crop (focus on upper body)
99
+ aspect_ratio_16_9 = 16 / 9
100
+ crop_width_16_9 = min(original_width, int(person_height * aspect_ratio_16_9))
101
+ crop_height_16_9 = min(original_height, int(crop_width_16_9 / aspect_ratio_16_9))
102
+
103
+ # For 16:9, center horizontally and align top with person's top
104
+ x1_16_9 = max(0, person_center_x - crop_width_16_9 // 2)
105
+ x2_16_9 = min(original_width, x1_16_9 + crop_width_16_9)
106
+ y1_16_9 = max(0, y1) # Start from person's top
107
+ y2_16_9 = min(original_height, y1_16_9 + crop_height_16_9)
108
+
109
+ # Adjust if exceeding boundaries
110
+ if x2_16_9 > original_width:
111
+ x1_16_9 = original_width - crop_width_16_9
112
+ x2_16_9 = original_width
113
+ if y2_16_9 > original_height:
114
+ y1_16_9 = original_height - crop_height_16_9
115
+ y2_16_9 = original_height
116
+
117
+ # Generate 9:16 crop (full body)
118
+ aspect_ratio_9_16 = 9 / 16
119
+ crop_width_9_16 = min(original_width, int(person_height * aspect_ratio_9_16))
120
+ crop_height_9_16 = min(original_height, int(crop_width_9_16 / aspect_ratio_9_16))
121
+
122
+ # For 9:16, center both horizontally and vertically
123
+ x1_9_16 = max(0, person_center_x - crop_width_9_16 // 2)
124
+ x2_9_16 = min(original_width, x1_9_16 + crop_width_9_16)
125
+ y1_9_16 = max(0, person_center_y - crop_height_9_16 // 2)
126
+ y2_9_16 = min(original_height, y1_9_16 + crop_height_9_16)
127
+
128
+ # Adjust if exceeding boundaries
129
+ if x2_9_16 > original_width:
130
+ x1_9_16 = original_width - crop_width_9_16
131
+ x2_9_16 = original_width
132
+ if y2_9_16 > original_height:
133
+ y1_9_16 = original_height - crop_height_9_16
134
+ y2_9_16 = original_height
135
+
136
+ # Create crops
137
+ crop_16_9 = frame[y1_16_9:y2_16_9, x1_16_9:x2_16_9]
138
+ crop_9_16 = frame[y1_9_16:y2_9_16, x1_9_16:x2_9_16]
139
+
140
+ # Resize to standard dimensions
141
+ crop_16_9 = cv2.resize(crop_16_9, (426, 240)) # 16:9 aspect ratio
142
+ crop_9_16 = cv2.resize(crop_9_16, (240, 426)) # 9:16 aspect ratio
143
+
144
+ return crop_16_9, crop_9_16
145
+
146
+
147
+ def visualize_crops(image, bbox, crops_info):
148
+ """
149
+ Visualize original bbox and calculated crops
150
+ bbox: [x1, y1, x2, y2]
151
+ crops_info: dict with 'crop_16_9' and 'crop_9_16' coordinates
152
+ """
153
+ viz = image.copy()
154
+
155
+ # Draw original person bbox in blue
156
+ cv2.rectangle(
157
+ viz, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (255, 0, 0), 2
158
+ )
159
+
160
+ # Draw 16:9 crop in green
161
+ crop_16_9 = crops_info["crop_16_9"]
162
+ cv2.rectangle(
163
+ viz,
164
+ (int(crop_16_9["x1"]), int(crop_16_9["y1"])),
165
+ (int(crop_16_9["x2"]), int(crop_16_9["y2"])),
166
+ (0, 255, 0),
167
+ 2,
168
+ )
169
+
170
+ # Draw 9:16 crop in red
171
+ crop_9_16 = crops_info["crop_9_16"]
172
+ cv2.rectangle(
173
+ viz,
174
+ (int(crop_9_16["x1"]), int(crop_9_16["y1"])),
175
+ (int(crop_9_16["x2"]), int(crop_9_16["y2"])),
176
+ (0, 0, 255),
177
+ 2,
178
+ )
179
+
180
+ return viz
181
+
182
+
183
+ def encode_image_to_base64(image: Image.Image, format: str = "JPEG") -> str:
184
+ """
185
+ Convert a PIL image to a base64 string.
186
+
187
+ Args:
188
+ image: PIL Image object
189
+ format: Image format to use for encoding (default: PNG)
190
+
191
+ Returns:
192
+ Base64 encoded string of the image
193
+ """
194
+ buffered = BytesIO()
195
+ image.save(buffered, format=format)
196
+ return base64.b64encode(buffered.getvalue()).decode("utf-8")
197
+
198
+
199
+ def add_top_numbers(
200
+ input_image,
201
+ num_divisions=20,
202
+ margin=90,
203
+ font_size=120,
204
+ dot_spacing=20,
205
+ ):
206
+ """
207
+ Add numbered divisions across the top and bottom of any image with dotted vertical lines.
208
+
209
+ Args:
210
+ input_image (Image): PIL Image
211
+ num_divisions (int): Number of divisions to create
212
+ margin (int): Size of margin in pixels for numbers
213
+ font_size (int): Font size for numbers
214
+ dot_spacing (int): Spacing between dots in pixels
215
+ """
216
+ # Load the image
217
+ original_image = input_image
218
+
219
+ # Create new image with extra space for numbers on top and bottom
220
+ new_width = original_image.width
221
+ new_height = original_image.height + (
222
+ 2 * margin
223
+ ) # Add margin to both top and bottom
224
+ new_image = Image.new("RGB", (new_width, new_height), "white")
225
+
226
+ # Paste original image in the middle
227
+ new_image.paste(original_image, (0, margin))
228
+
229
+ # Initialize drawing context
230
+ draw = ImageDraw.Draw(new_image)
231
+
232
+ try:
233
+ font = ImageFont.truetype("arial.ttf", font_size)
234
+ except OSError:
235
+ print("Using default font")
236
+ font = ImageFont.load_default(size=font_size)
237
+
238
+ # Calculate division width
239
+ division_width = original_image.width / num_divisions
240
+
241
+ # Draw division numbers and dotted lines
242
+ for i in range(num_divisions):
243
+ x = (i * division_width) + (division_width / 2)
244
+
245
+ # Draw number at top
246
+ draw.text((x, margin // 2), str(i + 1), fill="black", font=font, anchor="mm")
247
+
248
+ # Draw number at bottom
249
+ draw.text(
250
+ (x, new_height - (margin // 2)),
251
+ str(i + 1),
252
+ fill="black",
253
+ font=font,
254
+ anchor="mm",
255
+ )
256
+
257
+ # Draw dotted line from top margin to bottom margin
258
+ y_start = margin
259
+ y_end = new_height - margin
260
+
261
+ # Draw dots with specified spacing
262
+ current_y = y_start
263
+ while current_y < y_end:
264
+ draw.circle(
265
+ [x - 1, current_y - 1, x + 1, current_y + 1],
266
+ fill="black",
267
+ width=5,
268
+ radius=3,
269
+ )
270
+ current_y += dot_spacing
271
+
272
+ return new_image
273
+
274
+
275
+ def crop_and_draw_divisions(
276
+ input_image,
277
+ left_division,
278
+ right_division,
279
+ num_divisions=20,
280
+ line_color=(255, 0, 0),
281
+ line_width=2,
282
+ head_margin_percent=0.1,
283
+ ):
284
+ """
285
+ Create both 9:16 and 16:9 crops and draw guide lines.
286
+
287
+ Args:
288
+ input_image (Image): PIL Image
289
+ left_division (int): Left-side division number (1-20)
290
+ right_division (int): Right-side division number (1-20)
291
+ num_divisions (int): Total number of divisions (default=20)
292
+ line_color (tuple): RGB color tuple for lines (default: red)
293
+ line_width (int): Width of lines in pixels (default: 2)
294
+ head_margin_percent (float): Percentage margin above head (default: 0.1)
295
+
296
+ Returns:
297
+ tuple: (cropped_image_16_9, image_with_lines, cropped_image_9_16)
298
+ """
299
+ yolo_model = YOLO("yolo11n.pt")
300
+ # Calculate division width and boundaries
301
+ division_width = input_image.width / num_divisions
302
+ left_boundary = (left_division - 1) * division_width
303
+ right_boundary = right_division * division_width
304
+
305
+ # First get the 9:16 crop
306
+ cropped_image_9_16 = input_image.crop(
307
+ (left_boundary, 0, right_boundary, input_image.height)
308
+ )
309
+
310
+ # Run YOLO on the 9:16 crop to get person bbox
311
+ bbox = yolo_model(cropped_image_9_16, classes=[0])[0].boxes.xyxy.cpu().numpy()[0]
312
+ x1, y1, x2, y2 = bbox
313
+
314
+ # Calculate top boundary with head margin
315
+ head_margin = (y2 - y1) * head_margin_percent
316
+ top_boundary = max(0, y1 - head_margin)
317
+
318
+ # Calculate 16:9 dimensions based on the width between divisions
319
+ crop_width = right_boundary - left_boundary
320
+ crop_height_16_9 = int(crop_width * 9 / 16)
321
+
322
+ # Calculate bottom boundary for 16:9
323
+ bottom_boundary = min(input_image.height, top_boundary + crop_height_16_9)
324
+
325
+ # Create 16:9 crop from original image
326
+ cropped_image_16_9 = input_image.crop(
327
+ (left_boundary, top_boundary, right_boundary, bottom_boundary)
328
+ )
329
+
330
+ # Draw guide lines for both crops on original image
331
+ image_with_lines = input_image.copy()
332
+ draw = ImageDraw.Draw(image_with_lines)
333
+
334
+ # Draw vertical lines (for both crops)
335
+ draw.line(
336
+ [(left_boundary, 0), (left_boundary, input_image.height)],
337
+ fill=line_color,
338
+ width=line_width,
339
+ )
340
+ draw.line(
341
+ [(right_boundary, 0), (right_boundary, input_image.height)],
342
+ fill=line_color,
343
+ width=line_width,
344
+ )
345
+
346
+ # Draw horizontal lines (for 16:9 crop)
347
+ draw.line(
348
+ [(left_boundary, top_boundary), (right_boundary, top_boundary)],
349
+ fill=line_color,
350
+ width=line_width,
351
+ )
352
+ draw.line(
353
+ [(left_boundary, bottom_boundary), (right_boundary, bottom_boundary)],
354
+ fill=line_color,
355
+ width=line_width,
356
+ )
357
+
358
+ return cropped_image_16_9, image_with_lines, cropped_image_9_16
359
+
360
+
361
+ def analyze_image(numbered_input_image: Image, prompt, input_image):
362
+ """
363
+ Perform inference on an image using GPT-4V.
364
+
365
+ Args:
366
+ numbered_input_image (Image): PIL Image
367
+ prompt (str): The prompt/question about the image
368
+ input_image (Image): input image without numbers
369
+
370
+ Returns:
371
+ str: The model's response
372
+ """
373
+ client = OpenAI()
374
+ base64_image = encode_image_to_base64(numbered_input_image, format="JPEG")
375
+
376
+ messages = [
377
+ {
378
+ "role": "user",
379
+ "content": [
380
+ {"type": "text", "text": prompt},
381
+ {
382
+ "type": "image_url",
383
+ "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
384
+ },
385
+ ],
386
+ }
387
+ ]
388
+
389
+ response = client.chat.completions.create(
390
+ model="gpt-4o", messages=messages, max_tokens=300
391
+ )
392
+
393
+ messages.extend(
394
+ [
395
+ {"role": "assistant", "content": response.choices[0].message.content},
396
+ {
397
+ "role": "user",
398
+ "content": "please return the response in the json with keys left_row and right_row",
399
+ },
400
+ ],
401
+ )
402
+
403
+ response = (
404
+ client.chat.completions.create(model="gpt-4o", messages=messages)
405
+ .choices[0]
406
+ .message.content
407
+ )
408
+
409
+ left_index = response.find("{")
410
+ right_index = response.rfind("}")
411
+
412
+ try:
413
+ if left_index != -1 and right_index != -1:
414
+ response_json = eval(response[left_index : right_index + 1])
415
+ cropped_image_16_9, image_with_lines, cropped_image_9_16 = (
416
+ crop_and_draw_divisions(
417
+ input_image=input_image,
418
+ left_division=response_json["left_row"],
419
+ right_division=response_json["right_row"],
420
+ )
421
+ )
422
+ except Exception as e:
423
+ print(e)
424
+ return input_image, input_image, input_image
425
+
426
+ return cropped_image_16_9, image_with_lines, cropped_image_9_16
427
+
428
+
429
+ def get_sprite_firebase(cid, rsid, uid):
430
+ config = {
431
+ "apiKey": f"{os.getenv('FIREBASE_API_KEY')}",
432
+ "authDomain": f"{os.getenv('FIREBASE_AUTH_DOMAIN')}",
433
+ "databaseURL": f"{os.getenv('FIREBASE_DATABASE_URL')}",
434
+ "projectId": f"{os.getenv('FIREBASE_PROJECT_ID')}",
435
+ "storageBucket": f"{os.getenv('FIREBASE_STORAGE_BUCKET')}",
436
+ "messagingSenderId": f"{os.getenv('FIREBASE_MESSAGING_SENDER_ID')}",
437
+ "appId": f"{os.getenv('FIREBASE_APP_ID')}",
438
+ "measurementId": f"{os.getenv('FIREBASE_MEASUREMENT_ID')}",
439
+ }
440
+ config = {
441
+ "apiKey": "AIzaSyB4n2UpGtWsTPj2qd9zChzLevhFkLPliXI",
442
+ "authDomain": "roll-dev-7c14a.firebaseapp.com",
443
+ "databaseURL": "https://roll-dev-7c14a-default-rtdb.firebaseio.com",
444
+ "projectId": "roll-dev-7c14a",
445
+ "storageBucket": "roll-dev-7c14a.firebasestorage.app",
446
+ "messagingSenderId": "556047642295",
447
+ "appId": "1:556047642295:web:be8714a223d3763efa2732",
448
+ "measurementId": "G-RE6ZGE7DGG",
449
+ }
450
+ firebase = pyrebase.initialize_app(config)
451
+ db = firebase.database()
452
+ account_id = "roll-dev-account" # os.getenv('ROLL_ACCOUNT')
453
+
454
+ COLLAB_EDIT_LINK = "collab_sprite_link_handler"
455
+
456
+ path = f"{account_id}/{COLLAB_EDIT_LINK}/{uid}/{cid}/{rsid}"
457
+
458
+ data = db.child(path).get()
459
+ return data.val()
460
+
461
+
462
+ def get_image_crop(cid=None, rsid=None, uid=None):
463
+ """Function that returns both 16:9 and 9:16 crops"""
464
+ image_paths = get_sprite_firebase(cid, rsid, uid)
465
+
466
+ input_images = []
467
+ mid_images = []
468
+ cropped_image_16_9s = []
469
+ images_with_lines = []
470
+ cropped_image_9_16s = []
471
+
472
+ for image_path in image_paths:
473
+ response = requests.get(image_path)
474
+
475
+ input_image = Image.open(BytesIO(response.content))
476
+ input_images.append(input_image)
477
+
478
+ # Get the middle thumbnail
479
+ mid_image = get_middle_thumbnail(input_image)
480
+ mid_images.append(mid_image)
481
+
482
+ numbered_mid_image = add_top_numbers(
483
+ input_image=mid_image,
484
+ num_divisions=20,
485
+ margin=50,
486
+ font_size=30,
487
+ dot_spacing=20,
488
+ )
489
+
490
+ cropped_image_16_9, image_with_lines, cropped_image_9_16 = analyze_image(
491
+ numbered_mid_image, remove_unwanted_prompt(2), mid_image
492
+ )
493
+ cropped_image_16_9s.append(cropped_image_16_9)
494
+ images_with_lines.append(image_with_lines)
495
+ cropped_image_9_16s.append(cropped_image_9_16)
496
+
497
+ return gr.Gallery(
498
+ [
499
+ *input_images,
500
+ *mid_images,
501
+ *cropped_image_16_9s,
502
+ *images_with_lines,
503
+ *cropped_image_9_16s,
504
+ ]
505
+ )
prompts.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict
2
+
3
+
4
+ def get_street_interview_prompt(
5
+ transcript: str, uid: str, rsid: str, link_start: str
6
+ ) -> str:
7
+ """Generate prompt for street interview analysis."""
8
+ return f"""This is a transcript for a street interview. Call Details are as follows:
9
+ User ID UID: {uid}
10
+ RSID: {rsid}
11
+ Transcript: {transcript}
12
+
13
+ Your task is to analyze this street interview transcript and identify the final/best timestamps for each topic or question discussed. Here are the key rules:
14
+ The user might repeat the answer to the question sometimes, you need to pick the very last answer intelligently
15
+
16
+ 1. For any topic/answer that appears multiple times in the transcript (even partially):
17
+ - The LAST occurrence is always considered the best version. If the same thing is said multiple times, the last time is the best, all previous times are considered as additional takes.
18
+ - This includes cases where parts of an answer are scattered throughout the transcript
19
+ - Even slight variations of the same answer should be tracked
20
+ - List timestamps for ALL takes, with the final take highlighted as the best answer
21
+
22
+ 2. Introduction handling:
23
+ - Question 1 is ALWAYS the speaker's introduction/self-introduction
24
+ - If someone introduces themselves multiple times, use the last introduction as best answer
25
+ - Include all variations of how they state their name/background
26
+ - List ALL introduction timestamps chronologically
27
+
28
+ 3. Question sequence:
29
+ - After the introduction, list questions in the order they were first asked
30
+ - If a question or introduction is revisited later at any point, please use the later timestamp
31
+ - Track partial answers to the same question across the transcript
32
+
33
+ You need to make sure that any words that are repeated, you need to pick the last of them.
34
+
35
+ Return format:
36
+
37
+ [Question Title]
38
+ Total takes: [X] (Include ONLY if content appears more than once)
39
+ - [Take 1. <div id='topic' style="display: inline"> 15s at 12:30 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{750}}&et={{765}}&uid={{uid}})
40
+ - [Take 2. <div id='topic' style="display: inline"> 30s at 14:45 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{885}}&et={{915}}&uid={{uid}})
41
+ ...
42
+ - [Take X (Best) <div id='topic' style="display: inline"> 1m 10s at 16:20 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{980}}&et={{1050}}&uid={{uid}})"""
43
+
44
+
45
+ def get_street_interview_system_prompt(
46
+ cid: str, rsid: str, origin: str, ct: str
47
+ ) -> str:
48
+ """Generate system prompt for street interview analysis."""
49
+ return f"""You are analyzing a transcript for Call ID: {cid}, Session ID: {rsid}, Origin: {origin}, Call Type: {ct}.
50
+ CORE REQUIREMENT:
51
+ - TIMESTAMPS: A speaker can repeat the answer to a question multiple times. You need to pick the last answer very carefully and choose that as best take. Make sure that that same answer is not repeated again after the best answer.
52
+
53
+ YOU SHOULD Prioritize accuracy in timestamp at every cost. Read the Transcript carefully and decide where an answer starts and ends. You will have speaker labels so you need to be very sharp."""
54
+
55
+
56
+ def get_live_event_system_prompt(
57
+ cid: str,
58
+ rsid: str,
59
+ origin: str,
60
+ ct: str,
61
+ speaker_mapping: Dict[str, str],
62
+ transcript: str,
63
+ ) -> str:
64
+ """Generate system prompt for RollAI call analysis."""
65
+ return f"""You are a helpful assistant developed by Roll.AI(Leading AI tool for Remote production) who is analyzing the transcript for a RollAI Call. Following are the details:
66
+ - Call ID: {cid}
67
+ - Session ID: {rsid}
68
+ - Origin: {origin}
69
+ - Call Type: {ct}
70
+ - Speakers: {", ".join(speaker_mapping.values())}
71
+ - Diarized Transcript: {transcript}
72
+
73
+ You are tasked with creating social media clips from the transcript, You need to shortlist the atleast two short clips for EACH SPEAKER. There are some requirments:
74
+
75
+ CORE REQUIREMENTS:
76
+ 1. SPEAKER Overlap in the CLIP: When specifying the duration for the script, make sure that in that duration:
77
+ - There is only continuous dialogue from that speaker.
78
+ - As soon as another speaker starts talking or the topic ends, the clip MUST end.
79
+
80
+ 2. DURATION RULES:
81
+ - Each clip must be between 20 seconds to 120 seconds.
82
+
83
+ 3. SPEAKER COVERAGE:
84
+ - Minimum 2 topics per speaker, aim for 3 if good content exists
85
+
86
+ CRITICAL: When analyzing timestamps, you must verify that in the duration specified:
87
+ 1. No other speaker talks during the selected timeframe
88
+ 2. The speaker talks continuously for at least 20 seconds
89
+ 3. The clip ends BEFORE any interruption or speaker change"""
90
+
91
+
92
+ def get_live_event_user_prompt(uid: str, link_start: str) -> str:
93
+ """Generate user prompt for RollAI call analysis."""
94
+ return f"""User ID: {uid}
95
+
96
+ Your task is to find the starting time, ending time, and the duration for the each topic in the above Short Listed Topics. You need to return the answer in the following format.
97
+ Please make sure that in the duration of 1 speaker, there is no segment of any other speaker. The shortlisted duration must be of a single speaker
98
+
99
+ Return Format requirements:
100
+ SPEAKER FORMAT:
101
+ **Speaker Name**
102
+ 1. [Topic title <div id='topic' style="display: inline"> 22s at 12:30 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{750}}&et={{772}}&uid={{uid}})
103
+ 2. [Topic title <div id='topic' style="display: inline"> 43s at 14:45 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{885}}&et={{928}}&uid={{uid}})
104
+ 3. [Topic title <div id='topic' style="display: inline"> 58s at 16:20 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{980}}&et={{1038}}&uid={{uid}})
105
+ **Speaker Name**
106
+ ...."""
107
+
108
+
109
+ def get_chat_system_prompt(
110
+ cid: str,
111
+ rsid: str,
112
+ origin: str,
113
+ ct: str,
114
+ speaker_mapping: Dict[str, str],
115
+ transcript: str,
116
+ link_start: str,
117
+ ) -> str:
118
+ """Generate system prompt for chat analysis."""
119
+ return f"""You are a helpful assistant analyzing transcripts and generating timestamps and URL. The user will ask you questions regarding the social media clips from the transcript.
120
+ Call ID is {cid},
121
+ Session ID is {rsid},
122
+ origin is {origin},
123
+ Call Type is {ct}.
124
+ Speakers: {", ".join(speaker_mapping.values())}
125
+ Transcript: {transcript}
126
+
127
+ If a user asks timestamps for a specific topic or things, find the start time and end time of that specific topic and return answer in the format:
128
+ Answers and URLs should be formated as follows:
129
+ [Topic title <div id='topic' style="display: inline"> 22s at 12:30 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{750}}&et={{772}}&uid={{uid}})
130
+ For Example:
131
+ If the start time is 10:13 and end time is 10:18, the url will be:
132
+ {link_start}://roll.ai/colab/1234aq_12314/51234151?st=613&et=618&uid=82314
133
+ In the URL, make sure that after RSID there is ? and then rest of the fields are added via &.
134
+ You can include multiple links here that can related to the user answer. ALWAYS ANSWER FROM THE TRANSCRIPT.
135
+ RULE: When selecting timestamps for the answer, always use the **starting time (XX:YY)** as the reference point for your response, with the duration (Z seconds) calculated from this starting time, not the ending time of the segment.
136
+
137
+ Example 1:
138
+ User: Suggest me some clips that can go viral on Instagram.
139
+ Response:
140
+ 1. [Clip 1 <div id='topic' style="display: inline"> 22s at 12:30 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{750}}&et={{772}}&uid={{uid}})
141
+ User: Give me the URL where each person has introduced themselves.
142
+ 2. [Clip 2 <div id='topic' style="display: inline"> 10s at 10:00 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{600}}&et={{610}}&uid={{uid}})
143
+
144
+ Example 2:
145
+ Provide the exact timestamp where the person begins their introduction, typically starting with phrases like "Hi," "Hello," "I am," or "My name is," and include the full introduction, covering everything they say about themselves, including their name, role, background, current responsibilities, organization, and any additional details they provide about their work or personal interests.
146
+ 1. [Person Name1 <div id='topic' style="display: inline"> 43s at 14:45 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{885}}&et={{928}}&uid={{uid}})
147
+ 2. [Person Name2 <div id='topic' style="display: inline"> 58s at 16:20 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{980}}&et={{1038}}&uid={{uid}})
148
+ ....
149
+
150
+ If the user provides a link to the agenda, use the correct_speaker_name_with_url function to correct the speaker names based on the agenda.
151
+ If the user provides the correct call type, use the correct_call_type function to correct the call type. Call Type for street interviews is 'si'."""
152
+
153
+
154
+ def remove_unwanted_prompt(number_of_speakers: int):
155
+ if number_of_speakers == 2:
156
+ return """I want to crop this image such that no unwanted or Partial Object or Partial Human is in the image.
157
+ Please analyze the image such that you tell me the row number on both the left and right sides of the image inside which there is the no unwanted partial object."""
utils.py CHANGED
@@ -87,6 +87,13 @@ openai_tools = [
87
  },
88
  },
89
  },
 
 
 
 
 
 
 
90
  ]
91
 
92
 
 
87
  },
88
  },
89
  },
90
+ {
91
+ "type": "function",
92
+ "function": {
93
+ "name": "get_image",
94
+ "description": "If the user asks you to show crops, you need to call this function",
95
+ },
96
+ },
97
  ]
98
 
99