Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import os
|
2 |
from tempfile import TemporaryDirectory
|
3 |
|
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
|
|
6 |
import torch
|
7 |
from huggingface_hub import Repository
|
8 |
from rlgym_tools.rocket_league.misc.serialize import serialize_game_state, serialize_scoreboard, \
|
@@ -23,6 +25,7 @@ MODEL = torch.jit.load("vortex-ngp/vortex-ngp-avid-frog.pt", map_location=DEVICE
|
|
23 |
MODEL.eval()
|
24 |
|
25 |
|
|
|
26 |
@torch.inference_mode()
|
27 |
def infer(model, replay_file,
|
28 |
nullify_goal_difference=False,
|
@@ -263,60 +266,56 @@ RADIO_INFO = """
|
|
263 |
- **Ignore ties**: Makes the model pretend every situation is an overtime (e.g. ties are impossible).
|
264 |
""".strip()
|
265 |
|
|
|
|
|
|
|
266 |
|
267 |
-
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
-
with TemporaryDirectory() as temp_dir:
|
271 |
-
with gr.Blocks() as demo:
|
272 |
-
gr.Markdown(DESCRIPTION)
|
273 |
-
|
274 |
-
# Use gr.Column to stack components vertically
|
275 |
-
with gr.Column():
|
276 |
-
file_input = gr.File(label="Upload Replay File", type="filepath", file_types=[".replay"])
|
277 |
-
checkboxes = gr.Radio(label="Options", choices=RADIO_OPTIONS, type="index", value=RADIO_OPTIONS[0],
|
278 |
-
info=RADIO_INFO)
|
279 |
-
submit_button = gr.Button("Generate Predictions")
|
280 |
-
plot_output = gr.Plot(label="Predictions")
|
281 |
-
download_button = gr.DownloadButton("Download Predictions", visible=False)
|
282 |
|
|
|
283 |
# Make plot on button click
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
if __name__ == '__main__':
|
322 |
-
gradio_app()
|
|
|
1 |
import os
|
2 |
from tempfile import TemporaryDirectory
|
3 |
|
4 |
+
import gradio as gr
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
+
import spaces
|
8 |
import torch
|
9 |
from huggingface_hub import Repository
|
10 |
from rlgym_tools.rocket_league.misc.serialize import serialize_game_state, serialize_scoreboard, \
|
|
|
25 |
MODEL.eval()
|
26 |
|
27 |
|
28 |
+
@spaces.GPU
|
29 |
@torch.inference_mode()
|
30 |
def infer(model, replay_file,
|
31 |
nullify_goal_difference=False,
|
|
|
266 |
- **Ignore ties**: Makes the model pretend every situation is an overtime (e.g. ties are impossible).
|
267 |
""".strip()
|
268 |
|
269 |
+
with TemporaryDirectory() as temp_dir:
|
270 |
+
with gr.Blocks() as demo:
|
271 |
+
gr.Markdown(DESCRIPTION)
|
272 |
|
273 |
+
# Use gr.Column to stack components vertically
|
274 |
+
with gr.Column():
|
275 |
+
file_input = gr.File(label="Upload Replay File", type="filepath", file_types=[".replay"])
|
276 |
+
checkboxes = gr.Radio(label="Options", choices=RADIO_OPTIONS, type="index", value=RADIO_OPTIONS[0],
|
277 |
+
info=RADIO_INFO)
|
278 |
+
submit_button = gr.Button("Generate Predictions")
|
279 |
+
plot_output = gr.Plot(label="Predictions")
|
280 |
+
download_button = gr.DownloadButton("Download Predictions", visible=False)
|
281 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
+
def make_plot(replay_file, radio_option, progress=gr.Progress(track_tqdm=True)):
|
284 |
# Make plot on button click
|
285 |
+
nullify_goal_difference = radio_option == 1
|
286 |
+
ignore_ties = radio_option == 2
|
287 |
+
print(f"Processing file: {replay_file}")
|
288 |
+
|
289 |
+
replay_stem = os.path.splitext(os.path.basename(replay_file))[0]
|
290 |
+
postfix = ""
|
291 |
+
if nullify_goal_difference:
|
292 |
+
postfix += "_nullify_goal_difference"
|
293 |
+
elif ignore_ties:
|
294 |
+
postfix += "_ignore_ties"
|
295 |
+
preds_file = os.path.join(temp_dir, f"predictions_{replay_stem}{postfix}.csv")
|
296 |
+
if os.path.exists(preds_file):
|
297 |
+
print(f"Predictions file already exists: {preds_file}")
|
298 |
+
preds = pd.read_csv(preds_file, dtype={"Touch": str})
|
299 |
+
else:
|
300 |
+
preds = infer(MODEL, replay_file,
|
301 |
+
nullify_goal_difference=nullify_goal_difference,
|
302 |
+
ignore_ties=ignore_ties)
|
303 |
+
plt = plot_plotly(preds)
|
304 |
+
print(f"Plot generated for file: {replay_file}")
|
305 |
+
preds.to_csv(preds_file)
|
306 |
+
if len(os.listdir(temp_dir)) > 100:
|
307 |
+
# Delete least recent file
|
308 |
+
oldest_file = min(os.listdir(temp_dir), key=lambda f: os.path.getctime(os.path.join(temp_dir, f)))
|
309 |
+
os.remove(os.path.join(temp_dir, oldest_file))
|
310 |
+
return plt, gr.DownloadButton(value=preds_file, visible=True)
|
311 |
+
|
312 |
+
|
313 |
+
submit_button.click(
|
314 |
+
fn=make_plot,
|
315 |
+
inputs=[file_input, checkboxes],
|
316 |
+
outputs=[plot_output, download_button],
|
317 |
+
show_progress="full",
|
318 |
+
)
|
319 |
+
|
320 |
+
demo.queue(default_concurrency_limit=None)
|
321 |
+
demo.launch()
|
|
|
|