Spaces:
Running
Running
File size: 15,037 Bytes
35fc7cb b684b70 35fc7cb d77ab7d b4ee2f6 7fbdb45 d77ab7d 4cadea9 0046031 60a9c1e 0046031 702f42d 60a9c1e 0046031 702f42d 60a9c1e 702f42d 0046031 f56a977 0046031 f56a977 0046031 f56a977 0046031 f56a977 0046031 f56a977 0046031 f56a977 1fdf5ed 14950e2 0046031 1fdf5ed 0046031 1fdf5ed 69a6fbf 1fdf5ed d50dc32 0046031 1fdf5ed d50dc32 0046031 1fdf5ed 0046031 1fdf5ed 0046031 1fdf5ed 0046031 1fdf5ed 0046031 1fdf5ed 0046031 1fdf5ed 0046031 1fdf5ed 0046031 702f42d 1fdf5ed 0046031 1fdf5ed 0046031 1fdf5ed 0046031 1fdf5ed f8694a2 0046031 60a9c1e 0046031 1fdf5ed 0046031 1fdf5ed 702f42d 0046031 60a9c1e 1fdf5ed 0046031 60a9c1e 0046031 60a9c1e 0046031 1fdf5ed 0046031 d3f0bcb 0046031 1fdf5ed 0046031 1fdf5ed 0046031 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
# app.py — minimal for LLM + RAG (no MCP)
import os, json, random, uuid
from datetime import datetime
import streamlit as st
import rag_utils # 你已經有的:提供 search_tarot / search_numerology / ensure_indexes
from data import load_tarot_data_full, numerology_data_full
TAROT_DATA = load_tarot_data_full() # List[Dict]
NUMEROLOGY_DATA = numerology_data_full() # List[Dict]
# 若你需要只要牌名/數字,可自行萃取:
TAROT_NAMES = [c.get("name") or c.get("card_name") for c in TAROT_DATA if (c.get("name") or c.get("card_name"))]
# ========== 基本設定 ==========
st.set_page_config(page_title="SoulCompass", page_icon="🧭", layout="wide")
# 使用者暫時 UID(未登入先用本機隨機 ID)
if "uid" not in st.session_state:
st.session_state.uid = str(uuid.uuid4())[:8]
UID = st.session_state.uid
USER_DIR = os.path.join("data", "users", UID)
os.makedirs(USER_DIR, exist_ok=True)
JOURNAL_PATH = os.path.join(USER_DIR, "journal.jsonl")
st.markdown("""
<div style="text-align:center;background:linear-gradient(135deg,#6366F1,#C084FC);color:white;padding:1.4rem;border-radius:14px;margin-bottom:12px;">
<h2 style="margin:0;">🧭 SoulCompass — Tarot • Numerology • Journal • Guide</h2>
</div>
""", unsafe_allow_html=True)
# ========== 讀取 Tarot / Numerology 資料 ==========
@st.cache_resource
def load_tarot_names():
path = os.path.join("data", "tarot_data_full.json")
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
names = []
for c in data:
nm = c.get("name") or c.get("card_name")
if nm:
names.append(nm)
if not names:
raise ValueError("No card names found in data/tarot_data_full.json")
return names
@st.cache_resource
def load_numerology_data():
path = os.path.join("data", "numerology_data_full.json")
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
by_num, nums = {}, []
for r in data:
if "number" not in r:
continue
n = int(r["number"])
nums.append(n)
by_num[n] = {
"name": r.get("name",""),
"keywords": r.get("keywords",[]),
"description": r.get("description",""),
"advice": r.get("advice","")
}
nums = sorted(set(nums))
if not nums:
raise ValueError("No numerology numbers found in data/numerology_data_full.json")
return nums, by_num
def life_path_number_from_date(dt):
s = dt.strftime("%Y%m%d")
total = sum(int(d) for d in s)
while total > 9 and total not in (11, 22, 33):
total = sum(int(d) for d in str(total))
return total
TAROT_NAMES = load_tarot_data_full()
NUMBERS, NUM_MAP = load_numerology_data_full()
# ========== Sidebar:模型與 RAG 參數 ==========
st.sidebar.header("⚙️ Settings")
model_choice = st.sidebar.selectbox(
"LLM Model",
["cerebras/btlm-3b-8k-base", "mistralai/Mistral-7B-Instruct-v0.2"],
help="BTLM 輕量、CPU 可跑;Mistral 口條更好但較吃資源。"
)
rag_k = st.sidebar.slider("RAG Top-K", 1, 5, 3)
temperature = st.sidebar.slider("Temperature", 0.2, 1.2, 0.7, 0.1)
# ========== RAG + LLM Loader ==========
@st.cache_resource
def load_rag():
try:
import rag_utils
return rag_utils
except Exception as e:
st.warning("無法載入 rag_utils,請確認檔案存在於專案根目錄。")
return None
@st.cache_resource
def load_llm(model_id: str):
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
tok = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.float32, # 免費 CPU 最穩
device_map="auto",
low_cpu_mem_usage=True,
offload_folder="/tmp",
)
return pipeline(
"text-generation",
model=model,
tokenizer=tok,
max_new_tokens=360,
temperature=temperature,
top_p=0.9,
repetition_penalty=1.08,
do_sample=True,
)
rag = load_rag()
llm = load_llm(model_choice)
def rag_answer(query: str, domain: str = "Tarot", k: int = 3):
if rag is None:
return "RAG 模組未載入,請檢查 rag_utils.py。", []
hits = rag.search_tarot(query, k) if domain == "Tarot" else rag.search_numerology(query, k)
context = "\n\n".join([h["text"] for h in hits]) if hits else "(無檢索結果)"
prompt = f"""You are SoulCompass, a compassionate spiritual guide.
Use ONLY the CONTEXT to answer the USER in Traditional Chinese with empathy and clarity.
If info is missing, admit briefly and suggest a next step.
CONTEXT:
{context}
USER QUESTION: {query}
請用 5~8 句繁體中文回覆,語氣溫柔、務實,最後給出 1 句可行的小建議。"""
out = llm(prompt)[0]["generated_text"]
answer = out[len(prompt):].strip()
return answer, hits
# ========== Journal 長期保存(JSONL)==========
def load_journal(path=JOURNAL_PATH):
entries = []
if os.path.exists(path):
with open(path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
try:
entries.append(json.loads(line))
except Exception:
pass
return entries
def append_journal(entry: dict, path=JOURNAL_PATH):
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, "a", encoding="utf-8") as f:
f.write(json.dumps(entry, ensure_ascii=False) + "\n")
def save_all_journal(entries, path=JOURNAL_PATH):
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, "w", encoding="utf-8") as f:
for e in entries:
f.write(json.dumps(e, ensure_ascii=False) + "\n")
def export_journal_csv(path=JOURNAL_PATH):
if not os.path.exists(path):
return None
rows = load_journal(path)
out_csv = os.path.join(USER_DIR, "journal_export.csv")
import csv
with open(out_csv, "w", encoding="utf-8", newline="") as f:
w = csv.writer(f)
w.writerow(["time", "mood", "emotion", "text"])
for r in rows:
w.writerow([r.get("time",""), r.get("mood",""), r.get("emotion",""), r.get("text","")])
return out_csv
if "journal" not in st.session_state:
st.session_state.journal = load_journal()
# ========== AI 心靈導師(安全護欄+生成)==========
CRISIS_KEYWORDS = [
"自殺","想死","結束生命","活不下去","傷害自己","割腕",
"殺了我","想不開","無法活","輕生","自殘","不如死了"
]
def is_crisis(text: str) -> bool:
if not text:
return False
# 中文大小寫無差;直接檢索原文關鍵字
return any(k in text for k in CRISIS_KEYWORDS)
def guide_answer(user_msg: str, topic: str = "General"):
if is_crisis(user_msg):
crisis_reply = (
"我聽見你現在非常難受,謝謝你願意說出來。你的感受很重要,也值得被好好照顧。\n\n"
"目前這些想法可能代表你需要更即時、面對面的支持。請立刻聯絡你所在地的緊急服務,"
"或尋求可信任的人陪伴(家人、朋友、學校輔導/公司 EAP)。\n\n"
"你也可以尋找在地的心理諮商與危機支援資源(醫院身心科、社福單位、24 小時關懷專線)。\n\n"
"現在先做三件小事:1) 找一個安全的空間,2) 打給一位你信任的人,3) 緩慢做 5 次深呼吸(吸4、停2、吐6)。\n\n"
"我在這裡,願意繼續聽你說。"
)
return crisis_reply, []
# 可選:混入少量 RAG 提示(用 Numerology 當中性語料)
try:
ctx_hits = rag.search_numerology("自我照顧 情緒 調節 建議", k=2) if rag else []
context = "\n\n".join([h["text"] for h in ctx_hits]) if ctx_hits else "(無檢索)"
except Exception:
ctx_hits, context = [], "(無檢索)"
prompt = f"""You are SoulCompass, a supportive, non-clinical companion.
- Respond in Traditional Chinese.
- Be empathetic, specific, and action-oriented.
- Do NOT diagnose conditions or offer medical advice.
- Offer 2~4 small, doable next steps, tailored to the user's message.
- Keep it under 10 sentences.
OPTIONAL CONTEXT (self-care ideas):
{context}
TOPIC: {topic}
USER: {user_msg}
請用溫柔、務實、去評判的語氣回覆,先同理、再聚焦、最後給 2~4 個可行的小步驟。"""
out = llm(prompt)[0]["generated_text"]
return out[len(prompt):].strip(), ctx_hits
# ========== Tabs ==========
tab1, tab2, tab3, tab4 = st.tabs(["🔮 Tarot", "🔢 Numerology", "📖 Journal", "🤖 AI 心靈導師"])
# ---- Tarot ----
with tab1:
st.subheader("🔮 Tarot Reading")
q = st.text_input("想詢問什麼?(例:我適合換工作嗎?)", key="tarot_q")
spread = st.radio("抽牌陣列", ["Single (1)", "Three (3)", "Five (5)"], horizontal=True, key="tarot_spread")
if st.button("抽牌並解讀", key="tarot_go"):
if not q.strip():
st.warning("請先輸入問題")
else:
n = 1 if "1" in spread else (3 if "3" in spread else 5)
cards = random.sample(TAROT_NAMES, k=min(n, len(TAROT_NAMES)))
st.success("你抽到:" + ", ".join(cards))
query = f"問題:{q};抽到的牌:{', '.join(cards)}。請用塔羅牌義做整體解讀。"
with st.spinner("RAG 檢索 + 生成中…"):
ans, refs = rag_answer(query, domain="Tarot", k=rag_k)
st.markdown(ans)
if refs:
with st.expander("參考段落(RAG 來源)"):
for i, r in enumerate(refs, 1):
tag = r.get("card_name") or r.get("name") or "Card"
st.markdown(f"**#{i} {tag}** · score {r['score']:.3f}")
st.write(r["text"])
st.markdown("---")
# ---- Numerology ----
with tab2:
st.subheader("🔢 Numerology")
b = st.date_input("你的生日", key="dob")
col1, col2 = st.columns(2)
with col1:
if st.button("計算生命靈數", key="lp_go"):
if b:
lp = life_path_number_from_date(b)
st.success(f"你的生命靈數:{lp}({NUM_MAP.get(lp,{}).get('name','')})")
qn = f"生命靈數 {lp} 的核心特質、盲點與行動建議?"
with st.spinner("RAG 檢索 + 生成中…"):
ans, refs = rag_answer(qn, domain="Numerology", k=rag_k)
st.markdown(ans)
with col2:
name = st.text_input("你的姓名(可選)", key="name_num")
if st.button("名字數字", key="name_go"):
if name.strip():
n = (len(name.replace(" ", "")) % 9) + 1
st.info(f"名字數字:{n}({NUM_MAP.get(n,{}).get('name','')})")
qn = f"名字數字 {n} 的人在人際與自我表達上的建議?"
ans, _ = rag_answer(qn, domain="Numerology", k=rag_k)
st.write(ans)
# ---- Journal ----
with tab3:
st.subheader("📖 Soul Journal")
st.caption(f"本機使用者 ID:{UID}")
mood = st.slider("今天的心情(1-10)", 1, 10, 7, key="mood")
emotion = st.selectbox("主要情緒", ["😊 開心","😔 失落","😰 焦慮","😌 平靜","🤗 感恩"], key="emotion")
entry = st.text_area("寫下今天的想法", height=140, placeholder="你最近在思考什麼?今天最感謝的一件事是?", key="entry")
c1, c2, c3 = st.columns(3)
with c1:
if st.button("💾 儲存日記", key="save_journal"):
if entry.strip():
item = {
"time": datetime.now().strftime("%Y-%m-%d %H:%M"),
"mood": st.session_state.mood,
"emotion": st.session_state.emotion,
"text": entry.strip()
}
st.session_state.journal.append(item)
append_journal(item)
st.success("已儲存 🌟")
else:
st.warning("請先寫點內容")
with c2:
if st.button("⬇️ 匯出 CSV", key="export_journal"):
out_csv = export_journal_csv()
if out_csv and os.path.exists(out_csv):
with open(out_csv, "rb") as f:
st.download_button("下載日記 CSV", f, file_name="journal_export.csv")
else:
st.warning("目前沒有日記可匯出")
with c3:
if st.button("🗑️ 清空全部日記", key="clear_journal"):
save_all_journal([])
st.session_state.journal = []
st.success("全部日記已清空")
if st.session_state.journal:
st.markdown("---")
st.markdown("**最近紀錄(新→舊)**")
for j in reversed(st.session_state.journal[-50:]):
st.markdown(f"- **{j['time']} · {j['emotion']} · 心情 {j['mood']}** \n{j['text']}")
if st.button("🧠 生成 7 日回顧建議", key="review7"):
recent = "\n".join([j["text"] for j in st.session_state.journal[-20:]])
qj = f"這是我最近的日記重點:\n{recent}\n請用溫柔務實的語氣,總結 3 點觀察,並給 3 個可行的小建議。"
ans, _ = rag_answer(qj, domain="Numerology", k=2) # 用較中性的語料
st.markdown(ans)
# ---- AI 心靈導師 ----
with tab4:
st.subheader("🤖 AI 心靈導師")
st.caption("此功能提供一般性支持與自我照顧建議,非醫療或心理治療之替代。若有危機,請立即尋求在地緊急支援。")
topic = st.selectbox(
"主題",
["General", "Stress & Anxiety", "Relationships", "Work & Burnout", "Self-esteem", "Grief & Loss"],
index=0,
key="guide_topic"
)
user_msg = st.text_area("想跟我說點什麼?", height=140, placeholder="把現在的感受、困擾或情境說給我聽…", key="guide_msg")
if st.button("💬 取得支持", key="guide_go"):
if not user_msg.strip():
st.warning("請先輸入一段想說的話")
else:
with st.spinner("AI 正在整理回應…"):
reply, refs = guide_answer(user_msg, topic)
st.markdown(reply)
if refs:
with st.expander("參考段落(RAG 來源)"):
for i, r in enumerate(refs, 1):
st.markdown(f"**#{i}** · score {r['score']:.3f}")
st.write(r["text"])
st.markdown("---")
# ========== Footer ==========
st.markdown("<hr>", unsafe_allow_html=True)
st.caption("🧭 SoulCompass · demo MVP · RAG + LLM powered") |