Update app.py
Browse files
app.py
CHANGED
@@ -2,16 +2,17 @@ import gradio as gr
|
|
2 |
import requests
|
3 |
import os
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
|
|
6 |
def generate_image(prompt, negative_prompt, sampling_steps, cfg_scale, seed):
|
7 |
-
url = os.getenv("BASE_URL")
|
8 |
-
api_key = os.getenv("API_KEY")
|
9 |
-
|
10 |
headers = {
|
11 |
"Authorization": f"Bearer {api_key}"
|
12 |
}
|
13 |
|
14 |
-
|
15 |
"prompt": prompt,
|
16 |
"negative_prompt": negative_prompt,
|
17 |
"sampling_steps": sampling_steps,
|
@@ -19,30 +20,37 @@ def generate_image(prompt, negative_prompt, sampling_steps, cfg_scale, seed):
|
|
19 |
"seed": seed
|
20 |
}
|
21 |
|
22 |
-
response = requests.post(
|
23 |
-
generated_image = response.content # Получаем изображение из ответа API
|
24 |
-
return generated_image
|
25 |
-
|
26 |
-
# Создание интерфейса Gradio
|
27 |
-
inputs_tab1 = [
|
28 |
-
gr.Textbox(label="Prompt", lines=3),
|
29 |
-
gr.Textbox(label="Negative Prompt", lines=3)
|
30 |
-
]
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
gr.Slider(minimum=1, maximum=20, default=1, label="CFG Scale", step=1, init_value=1),
|
35 |
-
gr.Number(default=-1, label="Seed")
|
36 |
-
]
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
|
|
41 |
fn=generate_image,
|
42 |
-
inputs=[
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import requests
|
3 |
import os
|
4 |
|
5 |
+
# Получаем URL и API Key из переменных окружения
|
6 |
+
base_url = os.getenv("BASE_URL")
|
7 |
+
api_key = os.getenv("API_KEY")
|
8 |
+
|
9 |
+
# Функция для отправки запроса к модели
|
10 |
def generate_image(prompt, negative_prompt, sampling_steps, cfg_scale, seed):
|
|
|
|
|
|
|
11 |
headers = {
|
12 |
"Authorization": f"Bearer {api_key}"
|
13 |
}
|
14 |
|
15 |
+
payload = {
|
16 |
"prompt": prompt,
|
17 |
"negative_prompt": negative_prompt,
|
18 |
"sampling_steps": sampling_steps,
|
|
|
20 |
"seed": seed
|
21 |
}
|
22 |
|
23 |
+
response = requests.post(base_url, json=payload, headers=headers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Предположим, что модель возвращает изображение в виде байтов
|
26 |
+
generated_image_bytes = response.content
|
|
|
|
|
|
|
27 |
|
28 |
+
return generated_image_bytes
|
29 |
|
30 |
+
# Создаем интерфейс Gradio
|
31 |
+
iface = gr.Interface(
|
32 |
fn=generate_image,
|
33 |
+
inputs=[
|
34 |
+
gr.Textbox("text", label="Prompt", default=""),
|
35 |
+
gr.Textbox("text", label="Negative Prompt", default="")
|
36 |
+
],
|
37 |
+
outputs=[
|
38 |
+
gr.Image(type="pil", label="Generated Image"),
|
39 |
+
gr.Button("Download Image", onclick=lambda bytes: gr.download(bytes, "generated_image.png"))
|
40 |
+
],
|
41 |
+
live=True,
|
42 |
+
title="Huggingface Image Generator"
|
43 |
+
)
|
44 |
+
|
45 |
+
# Добавляем вторую вкладку
|
46 |
+
iface.add_tab(
|
47 |
+
"Advanced Settings",
|
48 |
+
[
|
49 |
+
gr.Slider(minimum=1, maximum=30, label="Sampling Steps", default=15),
|
50 |
+
gr.Slider(minimum=1, maximum=20, label="CFG Scale", default=10),
|
51 |
+
gr.Textbox("text", label="Seed", default="-1")
|
52 |
+
]
|
53 |
+
)
|
54 |
+
|
55 |
+
# Запускаем интерфейс
|
56 |
+
iface.launch()
|