File size: 8,351 Bytes
5ddef29 bab1e75 928dc00 d49e1e5 5ddef29 ccfc179 5ddef29 4fff7a9 5ddef29 4fff7a9 5ddef29 4fff7a9 5ddef29 2f14be5 5ddef29 f429ce6 5ddef29 8637ff9 5ddef29 ccfc179 b62f01b ccfc179 b62f01b ccfc179 b62f01b ccfc179 b62f01b 5ddef29 b62f01b 5ddef29 ccfc179 8637ff9 5ddef29 3bebd7a 79e5823 5ddef29 ccfc179 8637ff9 d49e1e5 5ddef29 8a2a16e 5ddef29 29d3fd7 8637ff9 3da2097 b62f01b 07fe02b 142b791 07fe02b 142b791 07fe02b b62f01b d55aa26 1a2ba23 07fe02b c97b62b e5111ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
import requests
import time
import json
import base64
import os
from io import BytesIO
import html
import re
class Prodia:
def __init__(self, api_key, base=None):
self.base = base or "https://api.prodia.com/v1"
self.headers = {
"X-Prodia-Key": api_key
}
def generate(self, params):
response = self._post(f"{self.base}/sd/generate", params)
return response.json()
def transform(self, params):
response = self._post(f"{self.base}/sd/transform", params)
return response.json()
def controlnet(self, params):
response = self._post(f"{self.base}/sd/controlnet", params)
return response.json()
def get_job(self, job_id):
response = self._get(f"{self.base}/job/{job_id}")
return response.json()
def wait(self, job):
job_result = job
while job_result['status'] not in ['succeeded', 'failed']:
time.sleep(0.25)
job_result = self.get_job(job['job'])
return job_result
def list_models(self):
response = self._get(f"{self.base}/sd/models")
return response.json()
def list_samplers(self):
response = self._get(f"{self.base}/sd/samplers")
return response.json()
def _post(self, url, params):
headers = {
**self.headers,
"Content-Type": "application/json"
}
response = requests.post(url, headers=headers, data=json.dumps(params))
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def _get(self, url):
response = requests.get(url, headers=self.headers)
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def image_to_base64(image):
# Convert the image to bytes
buffered = BytesIO()
image.save(buffered, format="PNG") # You can change format to PNG if needed
# Encode the bytes to base64
img_str = base64.b64encode(buffered.getvalue())
return img_str.decode('utf-8') # Convert bytes to string
def remove_id_and_ext(text):
text = re.sub(r'\[.*\]$', '', text)
extension = text[-12:].strip()
if extension == "safetensors":
text = text[:-13]
elif extension == "ckpt":
text = text[:-4]
return text
def get_data(text):
results = {}
patterns = {
'prompt': r'(.*)',
'negative_prompt': r'Negative prompt: (.*)',
'steps': r'Steps: (\d+),',
'seed': r'Seed: (\d+),',
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
'model': r'Model:\s*([^\s,]+)',
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
'size': r'Size:\s*([0-9]+x[0-9]+)'
}
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
match = re.search(patterns[key], text)
if match:
results[key] = match.group(1)
else:
results[key] = None
if results['size'] is not None:
w, h = results['size'].split("x")
results['w'] = w
results['h'] = h
else:
results['w'] = None
results['h'] = None
return results
def send_to_txt2img(image):
result = {tabs: gr.update(selected="t2i")}
try:
text = image.info['parameters']
data = get_data(text)
result[prompt] = gr.update(value=data['prompt'])
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update()
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
if model in model_names:
result[model] = gr.update(value=model_names[model])
else:
result[model] = gr.update()
return result
except Exception as e:
print(e)
return result
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
model_list = prodia_client.list_models()
model_names = {}
for model_name in model_list:
name_without_ext = remove_id_and_ext(model_name)
model_names[name_without_ext] = model_name
def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
result = prodia_client.generate({
"prompt": prompt,
"negative_prompt": negative_prompt,
"model": model,
"steps": steps,
"sampler": sampler,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"seed": seed
})
job = prodia_client.wait(result)
return job["imageUrl"]
def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
result = prodia_client.transform({
"imageData": image_to_base64(input_image),
"denoising_strength": denoising,
"prompt": prompt,
"negative_prompt": negative_prompt,
"model": model,
"steps": steps,
"sampler": sampler,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"seed": seed
})
job = prodia_client.wait(result)
return job["imageUrl"]
css = """
footer {visibility: hidden !important;}
"""
with gr.Blocks(css=css) as demo:
with gr.Tabs() as tabs:
with gr.Row():
with gr.Column(scale=3):
with gr.Tab("Базовые настройки"):
with gr.Row():
prompt = gr.Textbox(placeholder="Введите описание изображения...", show_label=True, label="Описание изображения", lines=3)
with gr.Accordion(label="Модель нейросети:", open=False):
model = gr.Radio(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=False, choices=prodia_client.list_models())
with gr.Tab("Расширенные настройки"):
with gr.Row():
with gr.Row():
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry")
with gr.Column(scale=1):
sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
with gr.Column(scale=1):
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
with gr.Column(scale=1):
width = gr.Slider(label="Ширина", minimum=15, maximum=1024, value=512, step=8)
height = gr.Slider(label="Длина", minimum=15, maximum=1024, value=512, step=8)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=10000000, value=-1)
with gr.Column():
text_button = gr.Button("Создать", variant='primary', elem_id="generate")
with gr.Column(scale=2):
image_output = gr.Image()
text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output)
demo.queue(concurrency_count=64, max_size=80, api_open=False).launch(max_threads=256)
|