File size: 12,694 Bytes
5ddef29
 
 
 
 
 
 
bab1e75
928dc00
acb05e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d49e1e5
5ddef29
ccfc179
5ddef29
 
 
 
 
 
 
 
4fff7a9
5ddef29
 
 
4fff7a9
5ddef29
 
 
4fff7a9
5ddef29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f14be5
5ddef29
 
f429ce6
 
 
 
5ddef29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8637ff9
 
 
 
 
 
 
5ddef29
 
 
ccfc179
b62f01b
 
 
 
 
 
 
 
 
ccfc179
b62f01b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccfc179
b62f01b
ccfc179
 
b62f01b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ddef29
 
b62f01b
 
 
 
 
 
5ddef29
ccfc179
8637ff9
5ddef29
 
 
 
 
 
3bebd7a
 
79e5823
 
5ddef29
 
 
 
 
 
ccfc179
acb05e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8637ff9
acb05e0
 
 
 
 
d49e1e5
5ddef29
8a2a16e
5ddef29
29d3fd7
8637ff9
3da2097
b62f01b
07fe02b
 
142b791
 
 
 
 
07fe02b
 
 
 
142b791
 
07fe02b
 
 
 
 
 
 
b62f01b
 
d55aa26
acb05e0
 
69356d4
 
 
acb05e0
1a2ba23
07fe02b
 
 
acb05e0
 
 
 
 
 
 
c97b62b
acb05e0
c97b62b
e5111ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import gradio as gr
import requests
import time
import json
import base64
import os
from io import BytesIO
import html
import re
import cv2
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from realesrgan.utils import RealESRGANer

os.system("pip freeze")
# download weights
if not os.path.exists('realesr-general-x4v3.pth'):
    os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
if not os.path.exists('GFPGANv1.2.pth'):
    os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
if not os.path.exists('GFPGANv1.3.pth'):
    os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
if not os.path.exists('GFPGANv1.4.pth'):
    os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
if not os.path.exists('RestoreFormer.pth'):
    os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
if not os.path.exists('CodeFormer.pth'):
    os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")

# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)

os.makedirs('output', exist_ok=True)



class Prodia:
    def __init__(self, api_key, base=None):
        self.base = base or "https://api.prodia.com/v1"
        self.headers = {
            "X-Prodia-Key": api_key
        }
    
    def generate(self, params):
        response = self._post(f"{self.base}/sd/generate", params)
        return response.json()
    
    def transform(self, params):
        response = self._post(f"{self.base}/sd/transform", params)
        return response.json()
    
    def controlnet(self, params):
        response = self._post(f"{self.base}/sd/controlnet", params)
        return response.json()
    
    def get_job(self, job_id):
        response = self._get(f"{self.base}/job/{job_id}")
        return response.json()

    def wait(self, job):
        job_result = job

        while job_result['status'] not in ['succeeded', 'failed']:
            time.sleep(0.25)
            job_result = self.get_job(job['job'])

        return job_result

    def list_models(self):
        response = self._get(f"{self.base}/sd/models")
        return response.json()

    def list_samplers(self):
        response = self._get(f"{self.base}/sd/samplers")
        return response.json()

    def _post(self, url, params):
        headers = {
            **self.headers,
            "Content-Type": "application/json"
        }
        response = requests.post(url, headers=headers, data=json.dumps(params))

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response

    def _get(self, url):
        response = requests.get(url, headers=self.headers)

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response


def image_to_base64(image):
    # Convert the image to bytes
    buffered = BytesIO()
    image.save(buffered, format="PNG")  # You can change format to PNG if needed
    
    # Encode the bytes to base64
    img_str = base64.b64encode(buffered.getvalue())

    return img_str.decode('utf-8')  # Convert bytes to string


def remove_id_and_ext(text):
    text = re.sub(r'\[.*\]$', '', text)
    extension = text[-12:].strip()
    if extension == "safetensors":
        text = text[:-13]
    elif extension == "ckpt":
        text = text[:-4]
    return text


def get_data(text):
    results = {}
    patterns = {
        'prompt': r'(.*)',
        'negative_prompt': r'Negative prompt: (.*)',
        'steps': r'Steps: (\d+),',
        'seed': r'Seed: (\d+),',
        'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)', 
        'model': r'Model:\s*([^\s,]+)',
        'cfg_scale': r'CFG scale:\s*([\d\.]+)',
        'size': r'Size:\s*([0-9]+x[0-9]+)'
        }
    for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
        match = re.search(patterns[key], text)
        if match:
            results[key] = match.group(1)
        else:
            results[key] = None
    if results['size'] is not None:
        w, h = results['size'].split("x")
        results['w'] = w
        results['h'] = h
    else:
        results['w'] = None
        results['h'] = None
    return results


def send_to_txt2img(image):

    result = {tabs: gr.update(selected="t2i")}

    try:
        text = image.info['parameters']
        data = get_data(text)
        result[prompt] = gr.update(value=data['prompt'])
        result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update()
        result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
        result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
        result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
        result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
        result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
        result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
        if model in model_names:
            result[model] = gr.update(value=model_names[model])
        else:
            result[model] = gr.update()
        return result

    except Exception as e:
        print(e)

        return result


prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
model_list = prodia_client.list_models()
model_names = {}

for model_name in model_list:
    name_without_ext = remove_id_and_ext(model_name)
    model_names[name_without_ext] = model_name


def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
    result = prodia_client.generate({
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "model": model,
        "steps": steps,
        "sampler": sampler,
        "cfg_scale": cfg_scale,
        "width": width,
        "height": height,
        "seed": seed
    })

    job = prodia_client.wait(result)

    return job["imageUrl"]


def img2img(img, version, scale, weight):
    weight /= 100
    print(img, version, scale, weight)
    try:
        extension = os.path.splitext(os.path.basename(str(img)))[1]
        img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
        if len(img.shape) == 3 and img.shape[2] == 4:
            img_mode = 'RGBA'
        elif len(img.shape) == 2:  # for gray inputs
            img_mode = None
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        else:
            img_mode = None

        if version == 'v1.2':
            face_enhancer = GFPGANer(
            model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'v1.3':
            face_enhancer = GFPGANer(
            model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'v1.4':
            face_enhancer = GFPGANer(
            model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'RestoreFormer':
            face_enhancer = GFPGANer(
            model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'CodeFormer':
            face_enhancer = GFPGANer(
            model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)

        try:
            _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
        except RuntimeError as error:
            print('Error', error)

        try:
            interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
            h, w = img.shape[0:2]
            output = cv2.resize(output, (int(w * scale), int(h * scale)), interpolation=interpolation)
        except Exception as error:
            print('wrong scale input.', error)
        if img_mode == 'RGBA':  # RGBA images should be saved in png format
            extension = 'png'
        else:
            extension = 'jpg'
        save_path = f'output/out.{extension}'
        cv2.imwrite(save_path, output)

        output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
        return output
    except Exception as error:
        print('global exception', error)
        return None

css = """
footer {visibility: hidden !important;}
"""
        
with gr.Blocks(css=css) as demo:
    
    with gr.Tabs() as tabs:
        with gr.Row():
            with gr.Column(scale=3):
                with gr.Tab("Базовые настройки"):
                    with gr.Row():
                        prompt = gr.Textbox(placeholder="Введите описание изображения...", show_label=True, label="Описание изображения", lines=3)
                        
                    with gr.Accordion(label="Модель нейросети:", open=False):
                        model = gr.Radio(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=False, choices=prodia_client.list_models())
                        
                with gr.Tab("Расширенные настройки"):
                    with gr.Row():
                        with gr.Row():
                            negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry")
                        with gr.Column(scale=1):
                            sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
                        with gr.Column(scale=1):
                            steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
                        with gr.Column(scale=1):
                            width = gr.Slider(label="Ширина", minimum=15, maximum=1024, value=512, step=8)
                            height = gr.Slider(label="Длина", minimum=15, maximum=1024, value=512, step=8)
                    
                        cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
                        seed = gr.Slider(label="Seed", minimum=-1, maximum=10000000, value=-1)
                with gr.Tab("Настройки апскейлинга"):
                    with gr.Row():
                        version = gr.Radio(choices=['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], value='v1.4', label='Версия'),
                        scale = gr.Number(label="Коэффициент масштабирования", value=2),
                        weight = gr.Slider(0, 100, label='Weight, только для CodeFormer. 0 для лучшего качества, 100 для лучшей идентичности', value=50)


            with gr.Column():
                text_button = gr.Button("Создать", variant='primary', elem_id="generate")
            with gr.Column(scale=2):
                image_output = gr.Image(show_label=True, label='Сгенерированное изображение:')

            with gr.Column():
                text_button_up = gr.Button("Улучшить качество", variant='secondary', elem_id="upscb")
            with gr.Column(scale=2):
                image_output_up = gr.Image(show_label=True, label='Увеличенное изображение:')

        text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output)
        text_button_up.click(img2img, inputs=[image_output, version, scale, weight], outputs=image_output_up)
        
demo.queue(concurrency_count=64, max_size=80, api_open=False).launch(max_threads=256)