Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -104,32 +104,122 @@ class SurveyAnalyzer:
|
|
104 |
}
|
105 |
}
|
106 |
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
color='平均分數',
|
110 |
-
color_continuous_scale=
|
111 |
-
text='平均分數'
|
|
|
|
|
|
|
|
|
|
|
112 |
)
|
113 |
|
114 |
# 調整圖表佈局
|
115 |
fig.update_layout(
|
116 |
-
font=dict(size=16),
|
117 |
-
title_font=dict(size=24),
|
|
|
118 |
xaxis_title="滿意度項目",
|
119 |
yaxis_title="平均分數",
|
120 |
-
yaxis_range=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
)
|
122 |
|
123 |
# 調整文字格式
|
124 |
fig.update_traces(
|
125 |
texttemplate='%{y:.2f}',
|
126 |
-
textposition='outside'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
)
|
128 |
|
129 |
st.plotly_chart(fig, use_container_width=True)
|
130 |
|
131 |
-
def plot_gender_distribution(self, df: pd.DataFrame, venues=None, month=None):
|
132 |
-
"""🟠
|
133 |
# 過濾數據
|
134 |
filtered_df = df.copy()
|
135 |
if venues and '全部' not in venues:
|
@@ -138,6 +228,13 @@ class SurveyAnalyzer:
|
|
138 |
# 假設有一個月份欄位,如果沒有請調整
|
139 |
filtered_df = filtered_df[filtered_df['月份'] == month]
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
gender_counts = filtered_df['1. 性別'].value_counts().reset_index()
|
142 |
gender_counts.columns = ['性別', '人數']
|
143 |
|
@@ -146,14 +243,27 @@ class SurveyAnalyzer:
|
|
146 |
gender_counts['百分比'] = (gender_counts['人數'] / total * 100).round(1)
|
147 |
gender_counts['標籤'] = gender_counts.apply(lambda x: f"{x['性別']}: {x['人數']}人 ({x['百分比']}%)", axis=1)
|
148 |
|
149 |
-
#
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
|
|
152 |
fig = px.pie(
|
153 |
gender_counts,
|
154 |
names='性別',
|
155 |
values='人數',
|
156 |
-
title='
|
157 |
color='性別',
|
158 |
color_discrete_map=color_map,
|
159 |
hover_data=['人數', '百分比'],
|
@@ -161,13 +271,93 @@ class SurveyAnalyzer:
|
|
161 |
custom_data=['標籤']
|
162 |
)
|
163 |
|
164 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
fig.update_traces(
|
166 |
textinfo='percent+label',
|
167 |
-
hovertemplate='%{customdata[0]}'
|
|
|
|
|
|
|
|
|
168 |
)
|
169 |
|
170 |
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
# 🎨 Streamlit UI
|
173 |
def main():
|
@@ -290,26 +480,73 @@ def main():
|
|
290 |
selected_analysis = st.sidebar.radio("選擇要查看的分析",
|
291 |
["📋 問卷統計報告", "📊 滿意度統計", "🟠 性別分佈"])
|
292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
if selected_analysis == "📋 問卷統計報告":
|
294 |
-
st.
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
if __name__ == "__main__":
|
315 |
main()
|
|
|
104 |
}
|
105 |
}
|
106 |
|
107 |
+
def plot_satisfaction_scores(self, df: pd.DataFrame, venues=None, month=None, age_range=None):
|
108 |
+
"""📊 各項滿意度平均分數圖表 - 美化版"""
|
109 |
+
# 過濾數據
|
110 |
+
filtered_df = df.copy()
|
111 |
+
if venues and '全部' not in venues:
|
112 |
+
filtered_df = filtered_df[filtered_df['場域名稱'].isin(venues)]
|
113 |
+
if month and month != '全部':
|
114 |
+
# 假設有一個月份欄位,如果沒有請調整
|
115 |
+
filtered_df = filtered_df[filtered_df['月份'] == month]
|
116 |
+
|
117 |
+
# 年齡篩選
|
118 |
+
if age_range:
|
119 |
+
ages = self.calculate_age(filtered_df['2.出生年(民國__年)'])
|
120 |
+
age_mask = (ages >= age_range[0]) & (ages <= age_range[1])
|
121 |
+
filtered_df = filtered_df[age_mask]
|
122 |
+
|
123 |
+
# 計算過濾後數據的平均和標準差
|
124 |
+
satisfaction_means = [filtered_df[col].mean() for col in self.satisfaction_columns]
|
125 |
+
satisfaction_stds = [filtered_df[col].std() for col in self.satisfaction_columns]
|
126 |
+
|
127 |
+
# 創建數據框
|
128 |
+
satisfaction_df = pd.DataFrame({
|
129 |
+
'滿意度項目': self.satisfaction_short_names,
|
130 |
+
'平均分數': satisfaction_means,
|
131 |
+
'標準差': satisfaction_stds
|
132 |
+
})
|
133 |
+
|
134 |
+
# 排序結果(可選)
|
135 |
+
satisfaction_df = satisfaction_df.sort_values(by='平均分數', ascending=False)
|
136 |
+
|
137 |
+
# 建立顏色漸變映射
|
138 |
+
color_scale = [
|
139 |
+
[0, '#90CAF9'], # 淺藍色
|
140 |
+
[0.5, '#2196F3'], # 中藍色
|
141 |
+
[1, '#1565C0'] # 深藍色
|
142 |
+
]
|
143 |
+
|
144 |
+
# 繪製條形圖
|
145 |
+
fig = px.bar(
|
146 |
+
satisfaction_df,
|
147 |
+
x='滿意度項目',
|
148 |
+
y='平均分數',
|
149 |
+
error_y='標準差',
|
150 |
+
title='📊 各項滿意度平均分數與標準差分析',
|
151 |
color='平均分數',
|
152 |
+
color_continuous_scale=color_scale,
|
153 |
+
text='平均分數',
|
154 |
+
hover_data={
|
155 |
+
'滿意度項目': True,
|
156 |
+
'平均分數': ':.2f',
|
157 |
+
'標準差': ':.2f'
|
158 |
+
}
|
159 |
)
|
160 |
|
161 |
# 調整圖表佈局
|
162 |
fig.update_layout(
|
163 |
+
font=dict(family="Arial", size=16),
|
164 |
+
title_font=dict(family="Arial Black", size=24),
|
165 |
+
title_x=0.5, # 標題置中
|
166 |
xaxis_title="滿意度項目",
|
167 |
yaxis_title="平均分數",
|
168 |
+
yaxis_range=[0, 5], # 評分範圍從0開始,視覺上更明顯
|
169 |
+
plot_bgcolor='rgba(240,240,240,0.8)', # 淺灰色背景
|
170 |
+
paper_bgcolor='white',
|
171 |
+
xaxis_tickangle=-25, # 斜角標籤,避免重疊
|
172 |
+
margin=dict(l=40, r=40, t=80, b=60),
|
173 |
+
legend_title_text="平均分數",
|
174 |
+
shapes=[
|
175 |
+
# 添加參考線 - 例如4分
|
176 |
+
dict(
|
177 |
+
type='line',
|
178 |
+
yref='y', y0=4, y1=4,
|
179 |
+
xref='paper', x0=0, x1=1,
|
180 |
+
line=dict(color='rgba(220,20,60,0.5)', width=2, dash='dash')
|
181 |
+
)
|
182 |
+
],
|
183 |
+
annotations=[
|
184 |
+
# 參考線標籤
|
185 |
+
dict(
|
186 |
+
x=0.02, y=4.1,
|
187 |
+
xref='paper', yref='y',
|
188 |
+
text='優良標準 (4分)',
|
189 |
+
showarrow=False,
|
190 |
+
font=dict(size=14, color='rgba(220,20,60,0.8)')
|
191 |
+
)
|
192 |
+
]
|
193 |
)
|
194 |
|
195 |
# 調整文字格式
|
196 |
fig.update_traces(
|
197 |
texttemplate='%{y:.2f}',
|
198 |
+
textposition='outside',
|
199 |
+
marker_line_color='rgb(8,48,107)',
|
200 |
+
marker_line_width=1.5,
|
201 |
+
opacity=0.85
|
202 |
+
)
|
203 |
+
|
204 |
+
# 添加受訪人數標註
|
205 |
+
num_respondents = len(filtered_df)
|
206 |
+
fig.add_annotation(
|
207 |
+
x=0.5, y=0,
|
208 |
+
xref='paper', yref='paper',
|
209 |
+
text=f'受訪人數: {num_respondents}人',
|
210 |
+
showarrow=False,
|
211 |
+
font=dict(size=16),
|
212 |
+
bgcolor='rgba(255,255,255,0.8)',
|
213 |
+
bordercolor='rgba(0,0,0,0.2)',
|
214 |
+
borderwidth=1,
|
215 |
+
borderpad=4,
|
216 |
+
y=-0.2
|
217 |
)
|
218 |
|
219 |
st.plotly_chart(fig, use_container_width=True)
|
220 |
|
221 |
+
def plot_gender_distribution(self, df: pd.DataFrame, venues=None, month=None, age_range=None):
|
222 |
+
"""🟠 性別分佈圓餅圖 - 增強精緻版"""
|
223 |
# 過濾數據
|
224 |
filtered_df = df.copy()
|
225 |
if venues and '全部' not in venues:
|
|
|
228 |
# 假設有一個月份欄位,如果沒有請調整
|
229 |
filtered_df = filtered_df[filtered_df['月份'] == month]
|
230 |
|
231 |
+
# 年齡篩選
|
232 |
+
if age_range:
|
233 |
+
ages = self.calculate_age(filtered_df['2.出生年(民國__年)'])
|
234 |
+
age_mask = (ages >= age_range[0]) & (ages <= age_range[1])
|
235 |
+
filtered_df = filtered_df[age_mask]
|
236 |
+
|
237 |
+
# 取得性別資料
|
238 |
gender_counts = filtered_df['1. 性別'].value_counts().reset_index()
|
239 |
gender_counts.columns = ['性別', '人數']
|
240 |
|
|
|
243 |
gender_counts['百分比'] = (gender_counts['人數'] / total * 100).round(1)
|
244 |
gender_counts['標籤'] = gender_counts.apply(lambda x: f"{x['性別']}: {x['人數']}人 ({x['百分比']}%)", axis=1)
|
245 |
|
246 |
+
# 獲取篩選條件說明
|
247 |
+
filter_description = []
|
248 |
+
if venues and '全部' not in venues:
|
249 |
+
filter_description.append(f"場域: {', '.join(venues)}")
|
250 |
+
if month and month != '全部':
|
251 |
+
filter_description.append(f"月份: {month}")
|
252 |
+
if age_range and (age_range[0] != min(self.calculate_age(df['2.出生年(民國__年)'])) or
|
253 |
+
age_range[1] != max(self.calculate_age(df['2.出生年(民國__年)']))):
|
254 |
+
filter_description.append(f"年齡: {age_range[0]}-{age_range[1]}歲")
|
255 |
+
|
256 |
+
filter_text = "(" + ", ".join(filter_description) + ")" if filter_description else ""
|
257 |
+
|
258 |
+
# 設定顏色映射 - 男性藍色,女性紅色 - 使用更精緻的顏色
|
259 |
+
color_map = {'男性': '#1976D2', '女性': '#D32F2F'}
|
260 |
|
261 |
+
# 建立子圖佈局以添加更多自定義元素
|
262 |
fig = px.pie(
|
263 |
gender_counts,
|
264 |
names='性別',
|
265 |
values='人數',
|
266 |
+
title=f'👥 受訪者性別分布{filter_text}',
|
267 |
color='性別',
|
268 |
color_discrete_map=color_map,
|
269 |
hover_data=['人數', '百分比'],
|
|
|
271 |
custom_data=['標籤']
|
272 |
)
|
273 |
|
274 |
+
# 更新圖表佈局
|
275 |
+
fig.update_layout(
|
276 |
+
font=dict(family="Arial", size=16),
|
277 |
+
title_font=dict(family="Arial Black", size=24),
|
278 |
+
title_x=0.5, # 標題置中
|
279 |
+
legend_title_text="性別",
|
280 |
+
legend=dict(
|
281 |
+
orientation="h",
|
282 |
+
yanchor="bottom",
|
283 |
+
y=-0.2,
|
284 |
+
xanchor="center",
|
285 |
+
x=0.5,
|
286 |
+
font=dict(size=16),
|
287 |
+
bordercolor="#E0E0E0",
|
288 |
+
borderwidth=2
|
289 |
+
),
|
290 |
+
margin=dict(l=20, r=20, t=80, b=100),
|
291 |
+
paper_bgcolor='white',
|
292 |
+
annotations=[
|
293 |
+
dict(
|
294 |
+
text=f"總受訪人數: {total}人",
|
295 |
+
x=0.5, y=-0.3,
|
296 |
+
xref="paper",
|
297 |
+
yref="paper",
|
298 |
+
showarrow=False,
|
299 |
+
font=dict(size=16, color="#616161")
|
300 |
+
)
|
301 |
+
]
|
302 |
+
)
|
303 |
+
|
304 |
+
# 添加男女比例標籤
|
305 |
+
male_count = gender_counts.loc[gender_counts['性別'] == '男性', '人數'].values[0] if '男性' in gender_counts['性別'].values else 0
|
306 |
+
female_count = gender_counts.loc[gender_counts['性別'] == '女性', '人數'].values[0] if '女性' in gender_counts['性別'].values else 0
|
307 |
+
|
308 |
+
# 計算男女比例
|
309 |
+
if male_count > 0 and female_count > 0:
|
310 |
+
ratio = round(male_count / female_count, 2)
|
311 |
+
ratio_text = f"男女比例 = {ratio}:1"
|
312 |
+
elif male_count > 0 and female_count == 0:
|
313 |
+
ratio_text = "僅有男性"
|
314 |
+
elif female_count > 0 and male_count == 0:
|
315 |
+
ratio_text = "僅有女性"
|
316 |
+
else:
|
317 |
+
ratio_text = "無性別數據"
|
318 |
+
|
319 |
+
fig.add_annotation(
|
320 |
+
text=ratio_text,
|
321 |
+
x=0.5, y=-0.15,
|
322 |
+
xref="paper",
|
323 |
+
yref="paper",
|
324 |
+
showarrow=False,
|
325 |
+
font=dict(size=16, color="#424242", family="Arial Bold")
|
326 |
+
)
|
327 |
+
|
328 |
+
# 更新懸停資訊
|
329 |
fig.update_traces(
|
330 |
textinfo='percent+label',
|
331 |
+
hovertemplate='%{customdata[0]}',
|
332 |
+
textfont_size=16,
|
333 |
+
marker=dict(line=dict(color='#FFFFFF', width=2)),
|
334 |
+
pull=[0.03, 0.03], # 稍微分離餅圖片段
|
335 |
+
rotation=45 # 旋轉角度
|
336 |
)
|
337 |
|
338 |
st.plotly_chart(fig, use_container_width=True)
|
339 |
+
|
340 |
+
# 在圓餅圖下方添加簡單分析
|
341 |
+
st.markdown("""
|
342 |
+
<div style="background-color:#F5F5F5; padding:15px; border-radius:10px; margin-top:10px; border-left:5px solid #1976D2;">
|
343 |
+
<h4 style="color:#1976D2;">📊 性別分佈簡易分析</h4>
|
344 |
+
""", unsafe_allow_html=True)
|
345 |
+
|
346 |
+
# 生成簡單分析文字
|
347 |
+
if total > 0:
|
348 |
+
majority_gender = '男性' if male_count > female_count else '女性' if female_count > male_count else '男女相等'
|
349 |
+
majority_pct = max(male_count, female_count) / total * 100 if male_count != female_count else 50
|
350 |
+
|
351 |
+
if male_count != female_count:
|
352 |
+
st.markdown(f"""
|
353 |
+
<p>本次調查中,<strong>{majority_gender}</strong>佔多數,約佔總體的<strong>{majority_pct:.1f}%</strong>。</p>
|
354 |
+
""", unsafe_allow_html=True)
|
355 |
+
else:
|
356 |
+
st.markdown("<p>本次調查中,男女比例相等,各佔50%。</p>", unsafe_allow_html=True)
|
357 |
+
else:
|
358 |
+
st.markdown("<p>目前沒有足夠的性別數據進行分析。</p>", unsafe_allow_html=True)
|
359 |
+
|
360 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
361 |
|
362 |
# 🎨 Streamlit UI
|
363 |
def main():
|
|
|
480 |
selected_analysis = st.sidebar.radio("選擇要查看的分析",
|
481 |
["📋 問卷統計報告", "📊 滿意度統計", "🟠 性別分佈"])
|
482 |
|
483 |
+
# 應用所有篩選條件
|
484 |
+
filtered_df = df.copy()
|
485 |
+
if selected_venues and '全部' not in selected_venues:
|
486 |
+
if '場域名稱' in filtered_df.columns:
|
487 |
+
filtered_df = filtered_df[filtered_df['場域名稱'].isin(selected_venues)]
|
488 |
+
if selected_month and selected_month != '全部':
|
489 |
+
if '月份' in filtered_df.columns:
|
490 |
+
filtered_df = filtered_df[filtered_df['月份'] == selected_month]
|
491 |
+
|
492 |
+
# 年齡篩選
|
493 |
+
if age_range:
|
494 |
+
ages = analyzer.calculate_age(filtered_df['2.出生年(民國__年)'])
|
495 |
+
age_mask = (ages >= age_range[0]) & (ages <= age_range[1])
|
496 |
+
filtered_df = filtered_df[age_mask]
|
497 |
+
|
498 |
+
# 顯示當前選擇的篩選器
|
499 |
+
filter_status = []
|
500 |
+
if selected_venues and '全部' not in selected_venues:
|
501 |
+
filter_status.append(f"📍 場域: {', '.join(selected_venues)}")
|
502 |
+
if selected_month and selected_month != '全部':
|
503 |
+
filter_status.append(f"📅 月份: {selected_month}")
|
504 |
+
if age_range and (age_range[0] != min(analyzer.calculate_age(df['2.出生年(民國__年)'])) or
|
505 |
+
age_range[1] != max(analyzer.calculate_age(df['2.出生年(民國__年)']))):
|
506 |
+
filter_status.append(f"👥 年齡: {age_range[0]}-{age_range[1]}歲")
|
507 |
+
|
508 |
+
if filter_status:
|
509 |
+
st.markdown("""
|
510 |
+
<div style="background-color:#E3F2FD; padding:10px; border-radius:8px; margin-bottom:20px; border-left:4px solid #1976D2;">
|
511 |
+
<h4 style="margin-bottom:10px; color:#1565C0;">🔍 當前篩選條件</h4>
|
512 |
+
""", unsafe_allow_html=True)
|
513 |
+
|
514 |
+
for status in filter_status:
|
515 |
+
st.markdown(f"<p style='margin:5px 0;'>{status}</p>", unsafe_allow_html=True)
|
516 |
+
|
517 |
+
# 顯示篩選後的樣本數
|
518 |
+
st.markdown(f"""
|
519 |
+
<p style='margin-top:10px; font-weight:bold;'>📊 篩選後樣本數: {len(filtered_df)}人</p>
|
520 |
+
</div>
|
521 |
+
""", unsafe_allow_html=True)
|
522 |
+
|
523 |
+
# 數據分析區塊
|
524 |
if selected_analysis == "📋 問卷統計報告":
|
525 |
+
st.markdown('<h2 style="color:#1976D2;">📋 問卷統計報告</h2>', unsafe_allow_html=True)
|
526 |
+
|
527 |
+
# 生成目前篩選條件下的報告
|
528 |
+
report = analyzer.generate_report(filtered_df)
|
529 |
+
|
530 |
+
# 使用卡片樣式顯示統計信息
|
531 |
+
col1, col2 = st.columns(2)
|
532 |
+
|
533 |
+
with col1:
|
534 |
+
st.markdown('<div class="card">', unsafe_allow_html=True)
|
535 |
+
st.markdown('<h3 style="color:#1976D2; border-bottom:1px solid #e0e0e0; padding-bottom:10px;">📊 基本統計數據</h3>', unsafe_allow_html=True)
|
536 |
+
|
537 |
+
for key, value in report['基本統計'].items():
|
538 |
+
if isinstance(value, dict):
|
539 |
+
st.markdown(f"<p><strong>{key}:</strong></p>", unsafe_allow_html=True)
|
540 |
+
for k, v in value.items():
|
541 |
+
st.markdown(f"<p style='margin-left:20px;'>- {k}: {v}</p>", unsafe_allow_html=True)
|
542 |
+
else:
|
543 |
+
st.markdown(f"<p><strong>{key}:</strong> {value}</p>", unsafe_allow_html=True)
|
544 |
+
|
545 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
546 |
+
|
547 |
+
with col2:
|
548 |
+
st.markdown('<div class="card">', unsafe_allow_html=True)
|
549 |
+
|
550 |
|
551 |
if __name__ == "__main__":
|
552 |
main()
|