Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
|
|
4 |
import numpy as np
|
5 |
from datetime import datetime
|
6 |
from dataclasses import dataclass, field
|
@@ -21,7 +22,7 @@ class SurveyAnalyzer:
|
|
21 |
"""📊 問卷分析類"""
|
22 |
|
23 |
def __init__(self):
|
24 |
-
#
|
25 |
self.satisfaction_columns = [
|
26 |
'1.示範場域提供多元的數位課程與活動',
|
27 |
'2.示範場域的數位課程與活動對我的生活應用有幫助',
|
@@ -43,13 +44,16 @@ class SurveyAnalyzer:
|
|
43 |
|
44 |
def plot_satisfaction_scores(self, df: pd.DataFrame):
|
45 |
"""📊 示範場域滿意度平均分數圖表"""
|
|
|
|
|
|
|
46 |
# 計算平均分數和標準差
|
47 |
-
satisfaction_means = [df[col].mean() for col in
|
48 |
-
satisfaction_stds = [df[col].std() for col in
|
49 |
|
50 |
# 創建數據框
|
51 |
satisfaction_df = pd.DataFrame({
|
52 |
-
'滿意度項目': self.satisfaction_short_names,
|
53 |
'平均分數': satisfaction_means,
|
54 |
'標準差': satisfaction_stds
|
55 |
})
|
@@ -124,27 +128,47 @@ class SurveyAnalyzer:
|
|
124 |
opacity=0.85
|
125 |
)
|
126 |
|
127 |
-
#
|
128 |
-
|
129 |
-
fig.add_annotation(
|
130 |
-
x=0.5,
|
131 |
-
xref='paper',
|
132 |
-
yref='paper',
|
133 |
-
text=f'受訪人數: {num_respondents}人',
|
134 |
-
showarrow=False,
|
135 |
-
font=dict(size=16),
|
136 |
-
bgcolor='rgba(255,255,255,0.8)',
|
137 |
-
bordercolor='rgba(0,0,0,0.2)',
|
138 |
-
borderwidth=1,
|
139 |
-
borderpad=4,
|
140 |
-
y=-0.2
|
141 |
-
)
|
142 |
-
|
143 |
-
# 計算整體平均滿意度
|
144 |
-
overall_satisfaction = df[self.satisfaction_columns].mean().mean()
|
145 |
|
146 |
# 返回圖表和整體滿意度
|
147 |
-
return fig, overall_satisfaction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
def main():
|
150 |
st.set_page_config(page_title="示範場域滿意度調查", layout="wide")
|
@@ -155,58 +179,67 @@ def main():
|
|
155 |
df = read_google_sheet(sheet_id, gid)
|
156 |
|
157 |
if df is not None:
|
158 |
-
#
|
159 |
-
|
160 |
-
'1.示範場域提供多元的數位課程與活動',
|
161 |
-
'2.示範場域的數位課程與活動對我的生活應用有幫助',
|
162 |
-
'3.示範場域的服務人員親切有禮貌',
|
163 |
-
'4.示範場域的服務空間與數位設備友善方便',
|
164 |
-
'5.在示範場域可以獲得需要的協助',
|
165 |
-
'6.對於示範場域的服務感到滿意'
|
166 |
-
]
|
167 |
|
168 |
-
#
|
169 |
-
|
|
|
|
|
|
|
170 |
if missing_columns:
|
171 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
else:
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
- 2-3分: 普通
|
194 |
-
- 3-4分: 滿意
|
195 |
-
- 4-5分: 非常滿意
|
196 |
-
|
197 |
-
根據調查結果,整體滿意度為 {overall_satisfaction:.2f} 分,
|
198 |
-
""", unsafe_allow_html=True)
|
199 |
-
|
200 |
-
# 根據整體滿意度提供文字解讀
|
201 |
-
if overall_satisfaction < 2:
|
202 |
-
st.warning("⚠️ 整體滿意度較低,建議深入檢討服務品質")
|
203 |
-
elif overall_satisfaction < 3:
|
204 |
-
st.info("ℹ️ 整體滿意度處於普通水平,可以進一步改善服務")
|
205 |
-
elif overall_satisfaction < 4:
|
206 |
-
st.success("✅ 整體滿意度良好,但仍有提升空間")
|
207 |
-
else:
|
208 |
-
st.balloons()
|
209 |
-
st.success("🎉 整體滿意度非常高,表現優異!")
|
210 |
|
211 |
if __name__ == "__main__":
|
212 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
+
import plotly.graph_objs as go
|
5 |
import numpy as np
|
6 |
from datetime import datetime
|
7 |
from dataclasses import dataclass, field
|
|
|
22 |
"""📊 問卷分析類"""
|
23 |
|
24 |
def __init__(self):
|
25 |
+
# 滿意度欄位名稱
|
26 |
self.satisfaction_columns = [
|
27 |
'1.示範場域提供多元的數位課程與活動',
|
28 |
'2.示範場域的數位課程與活動對我的生活應用有幫助',
|
|
|
44 |
|
45 |
def plot_satisfaction_scores(self, df: pd.DataFrame):
|
46 |
"""📊 示範場域滿意度平均分數圖表"""
|
47 |
+
# 確保所有滿意度欄位都存在
|
48 |
+
existing_columns = [col for col in self.satisfaction_columns if col in df.columns]
|
49 |
+
|
50 |
# 計算平均分數和標準差
|
51 |
+
satisfaction_means = [df[col].mean() for col in existing_columns]
|
52 |
+
satisfaction_stds = [df[col].std() for col in existing_columns]
|
53 |
|
54 |
# 創建數據框
|
55 |
satisfaction_df = pd.DataFrame({
|
56 |
+
'滿意度項目': [self.satisfaction_short_names[self.satisfaction_columns.index(col)] for col in existing_columns],
|
57 |
'平均分數': satisfaction_means,
|
58 |
'標準差': satisfaction_stds
|
59 |
})
|
|
|
128 |
opacity=0.85
|
129 |
)
|
130 |
|
131 |
+
# 計算整體平均滿意度(只計算存在的欄位)
|
132 |
+
overall_satisfaction = df[existing_columns].mean().mean()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
# 返回圖表和整體滿意度
|
135 |
+
return fig, overall_satisfaction, len(df)
|
136 |
+
|
137 |
+
def analyze_demographic_data(self, df: pd.DataFrame):
|
138 |
+
"""分析性別和教育程度"""
|
139 |
+
# 性別分佈
|
140 |
+
if '性別' in df.columns:
|
141 |
+
gender_counts = df['性別'].value_counts()
|
142 |
+
gender_pie = go.Figure(data=[go.Pie(
|
143 |
+
labels=gender_counts.index,
|
144 |
+
values=gender_counts.values,
|
145 |
+
hole=.3,
|
146 |
+
title='性別分佈'
|
147 |
+
)])
|
148 |
+
gender_pie.update_layout(title='📊 性別分佈')
|
149 |
+
else:
|
150 |
+
gender_pie = None
|
151 |
+
st.warning("資料中缺少性別欄位")
|
152 |
+
|
153 |
+
# 教育程度分佈
|
154 |
+
if '教育程度' in df.columns:
|
155 |
+
education_counts = df['教育程度'].value_counts()
|
156 |
+
education_bar = go.Figure(data=[go.Bar(
|
157 |
+
x=education_counts.index,
|
158 |
+
y=education_counts.values,
|
159 |
+
text=education_counts.values,
|
160 |
+
textposition='auto'
|
161 |
+
)])
|
162 |
+
education_bar.update_layout(
|
163 |
+
title='📊 教育程度分佈',
|
164 |
+
xaxis_title='教育程度',
|
165 |
+
yaxis_title='人數'
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
education_bar = None
|
169 |
+
st.warning("資料中缺少教育程度欄位")
|
170 |
+
|
171 |
+
return gender_pie, education_bar
|
172 |
|
173 |
def main():
|
174 |
st.set_page_config(page_title="示範場域滿意度調查", layout="wide")
|
|
|
179 |
df = read_google_sheet(sheet_id, gid)
|
180 |
|
181 |
if df is not None:
|
182 |
+
# 創建分析器
|
183 |
+
analyzer = SurveyAnalyzer()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
# 顯示標題
|
186 |
+
st.title("📊 示範場域滿意度調查分析")
|
187 |
+
|
188 |
+
# 提示缺少的滿意度欄位
|
189 |
+
missing_columns = [col for col in analyzer.satisfaction_columns if col not in df.columns]
|
190 |
if missing_columns:
|
191 |
+
st.warning(f"⚠️ 缺少以下滿意度欄位: {missing_columns}")
|
192 |
+
|
193 |
+
# 繪製滿意度圖表
|
194 |
+
satisfaction_fig, overall_satisfaction, num_respondents = analyzer.plot_satisfaction_scores(df)
|
195 |
+
|
196 |
+
# 顯示滿意度圖表
|
197 |
+
st.plotly_chart(satisfaction_fig, use_container_width=True)
|
198 |
+
|
199 |
+
# 顯示整體滿意度
|
200 |
+
st.markdown(f"""
|
201 |
+
### 📈 整體滿意度分析
|
202 |
+
- **受訪人數**: {num_respondents} 人
|
203 |
+
- **整體平均滿意度**: {overall_satisfaction:.2f} 分
|
204 |
+
|
205 |
+
#### 🔍 滿意度解讀
|
206 |
+
- 0-1分: 非常不滿意
|
207 |
+
- 1-2分: 不滿意
|
208 |
+
- 2-3分: 普通
|
209 |
+
- 3-4分: 滿意
|
210 |
+
- 4-5分: 非常滿意
|
211 |
+
|
212 |
+
根據調查結果,整體滿意度為 {overall_satisfaction:.2f} 分,
|
213 |
+
""", unsafe_allow_html=True)
|
214 |
+
|
215 |
+
# 根據整體滿意度提供文字解讀
|
216 |
+
if overall_satisfaction < 2:
|
217 |
+
st.warning("⚠️ 整體滿意度較低,建議深入檢討服務品質")
|
218 |
+
elif overall_satisfaction < 3:
|
219 |
+
st.info("ℹ️ 整體滿意度處於普通水平,可以進一步改善服務")
|
220 |
+
elif overall_satisfaction < 4:
|
221 |
+
st.success("✅ 整體滿意度良好,但仍有提升空間")
|
222 |
else:
|
223 |
+
st.balloons()
|
224 |
+
st.success("🎉 整體滿意度非常高,表現優異!")
|
225 |
+
|
226 |
+
# 人口統計分析
|
227 |
+
st.header("👥 人口統計分析")
|
228 |
+
|
229 |
+
# 創建兩列顯示
|
230 |
+
col1, col2 = st.columns(2)
|
231 |
+
|
232 |
+
# 性別分佈
|
233 |
+
with col1:
|
234 |
+
gender_pie, _ = analyzer.analyze_demographic_data(df)
|
235 |
+
if gender_pie:
|
236 |
+
st.plotly_chart(gender_pie, use_container_width=True)
|
237 |
+
|
238 |
+
# 教育程度分佈
|
239 |
+
with col2:
|
240 |
+
_, education_bar = analyzer.analyze_demographic_data(df)
|
241 |
+
if education_bar:
|
242 |
+
st.plotly_chart(education_bar, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
if __name__ == "__main__":
|
245 |
main()
|