Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
import pandas as pd
|
5 |
+
import time
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
from datetime import datetime
|
9 |
+
|
10 |
+
# Set page config
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="PChome 商品分析器",
|
13 |
+
page_icon="📊",
|
14 |
+
layout="wide"
|
15 |
+
)
|
16 |
+
|
17 |
+
# Title and description
|
18 |
+
st.title("PChome 商品分析器")
|
19 |
+
st.markdown("這個應用程式可以爬取並分析 PChome 上的商品資訊")
|
20 |
+
|
21 |
+
# Input section
|
22 |
+
with st.sidebar:
|
23 |
+
st.header("搜尋設定")
|
24 |
+
keyword = st.text_input("請輸入搜尋關鍵字", "行李箱")
|
25 |
+
page_num = st.number_input("要爬取的頁數", min_value=1, max_value=10, value=1)
|
26 |
+
|
27 |
+
# Function to scrape PChome data
|
28 |
+
def scrape_pchome(keyword, page_num):
|
29 |
+
alldata = pd.DataFrame()
|
30 |
+
|
31 |
+
with st.spinner(f'正在爬取 {page_num} 頁的資料...'):
|
32 |
+
for i in range(1, page_num + 1):
|
33 |
+
# Progress bar
|
34 |
+
progress = st.progress((i - 1) / page_num)
|
35 |
+
|
36 |
+
url = f'https://ecshweb.pchome.com.tw/search/v3.3/all/results?q={keyword}&page={i}&sort=sale/dc'
|
37 |
+
|
38 |
+
try:
|
39 |
+
list_req = requests.get(url)
|
40 |
+
getdata = json.loads(list_req.content)
|
41 |
+
|
42 |
+
if 'prods' in getdata and getdata['prods']:
|
43 |
+
todataFrame = pd.DataFrame(getdata['prods'])
|
44 |
+
alldata = pd.concat([alldata, todataFrame])
|
45 |
+
|
46 |
+
time.sleep(2) # Reduced sleep time for better user experience
|
47 |
+
|
48 |
+
except Exception as e:
|
49 |
+
st.error(f"爬取第 {i} 頁時發生錯誤: {str(e)}")
|
50 |
+
break
|
51 |
+
|
52 |
+
progress.progress((i) / page_num)
|
53 |
+
|
54 |
+
return alldata
|
55 |
+
|
56 |
+
# Function to create analysis plots
|
57 |
+
def create_analysis_plots(df):
|
58 |
+
# Basic statistics
|
59 |
+
st.subheader("基本統計資訊")
|
60 |
+
col1, col2, col3 = st.columns(3)
|
61 |
+
with col1:
|
62 |
+
st.metric("平均價格", f"NT$ {df['price'].mean():,.0f}")
|
63 |
+
with col2:
|
64 |
+
st.metric("最高價格", f"NT$ {df['price'].max():,.0f}")
|
65 |
+
with col3:
|
66 |
+
st.metric("最低價格", f"NT$ {df['price'].min():,.0f}")
|
67 |
+
|
68 |
+
# Price trend plot
|
69 |
+
st.subheader("價格趨勢圖")
|
70 |
+
fig, ax = plt.subplots(figsize=(15, 8))
|
71 |
+
df['price'][:70].plot(
|
72 |
+
color='skyblue',
|
73 |
+
linewidth=2,
|
74 |
+
marker='o',
|
75 |
+
markersize=8,
|
76 |
+
ax=ax
|
77 |
+
)
|
78 |
+
|
79 |
+
mean_price = df['price'].mean()
|
80 |
+
ax.axhline(y=mean_price, color='red', linestyle='--', linewidth=2,
|
81 |
+
label=f'平均價格: NT$ {mean_price:,.0f}')
|
82 |
+
|
83 |
+
plt.title(f'{datetime.now().strftime("%Y%m%d")} PChome {keyword} 售價分析',
|
84 |
+
fontsize=20, fontweight='bold')
|
85 |
+
plt.xlabel('商品編號', fontsize=14)
|
86 |
+
plt.ylabel('價格 (NT$)', fontsize=14)
|
87 |
+
plt.xticks(rotation=45)
|
88 |
+
plt.grid(True, alpha=0.3)
|
89 |
+
plt.legend()
|
90 |
+
st.pyplot(fig)
|
91 |
+
|
92 |
+
# Price distribution plot
|
93 |
+
st.subheader("價格分布圖")
|
94 |
+
fig2, ax2 = plt.subplots(figsize=(12, 6))
|
95 |
+
sns.histplot(data=df['price'], bins=30, kde=True, ax=ax2)
|
96 |
+
plt.title('商品價格分布', fontsize=16)
|
97 |
+
plt.xlabel('價格 (NT$)', fontsize=12)
|
98 |
+
plt.ylabel('數量', fontsize=12)
|
99 |
+
st.pyplot(fig2)
|
100 |
+
|
101 |
+
# Main app logic
|
102 |
+
if st.sidebar.button('開始分析'):
|
103 |
+
# Record start time
|
104 |
+
start_time = time.time()
|
105 |
+
|
106 |
+
# Scrape data
|
107 |
+
data = scrape_pchome(keyword, page_num)
|
108 |
+
|
109 |
+
if not data.empty:
|
110 |
+
# Display raw data
|
111 |
+
st.subheader("原始資料")
|
112 |
+
st.dataframe(data[['name', 'price']])
|
113 |
+
|
114 |
+
# Create analysis plots
|
115 |
+
create_analysis_plots(data)
|
116 |
+
|
117 |
+
# Download button for CSV
|
118 |
+
csv = data.to_csv(index=False).encode('utf-8-sig')
|
119 |
+
st.download_button(
|
120 |
+
label="下載完整資料 (CSV)",
|
121 |
+
data=csv,
|
122 |
+
file_name=f'pchome_{keyword}_{datetime.now().strftime("%Y%m%d")}.csv',
|
123 |
+
mime='text/csv'
|
124 |
+
)
|
125 |
+
|
126 |
+
# Display execution time
|
127 |
+
end_time = time.time()
|
128 |
+
st.info(f'分析完成!執行時間:{end_time - start_time:.2f} 秒')
|
129 |
+
else:
|
130 |
+
st.error("沒有找到相關商品資料")
|
131 |
+
|
132 |
+
# Footer
|
133 |
+
st.markdown("---")
|
134 |
+
st.markdown("Made with ❤️ by Your Name")
|