Rooobert's picture
Update app.py
f39d20c verified
raw
history blame
6.42 kB
# file_path: app.py
import streamlit as st
import requests
from bs4 import BeautifulSoup
import pandas as pd
from google.oauth2.service_account import Credentials
import gspread
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# Google Sheets credentials
SCOPE = ['https://www.googleapis.com/auth/spreadsheets']
SERVICE_ACCOUNT_FILE = "realtime-441511-f5708eabdf26.json"
SPREADSHEET_URL = "https://docs.google.com/spreadsheets/d/1tIsXCbB8P6ZxdnZNnv7S7BBWbbT7lrSjW990zG-vQAA/edit?gid=0#gid=0"
# Streamlit app
st.title("Booking.com 台南飯店資料爬取與分析")
st.sidebar.header("功能選擇")
mode = st.sidebar.selectbox("選擇模式", ["資料爬取", "資料視覺化", "上傳至 Google Sheet"])
@st.cache_data
def scrape_booking_hotel():
url = "https://www.booking.com/searchresults.zh-tw.html"
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept-Language': 'zh-TW,zh;q=0.9,en-US;q=0.8,en;q=0.7',
}
params = {
'ss': '台南',
'checkin': '2024-11-16',
'checkout': '2024-11-17',
'group_adults': '2',
'no_rooms': '1',
'group_children': '0',
'dest_id': '-2637868',
'dest_type': 'city'
}
try:
response = requests.get(url, headers=headers, params=params)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
hotels_data = []
hotel_cards = soup.find_all('div', {'data-testid': 'property-card'})
for hotel in hotel_cards:
try:
name_elem = hotel.find('div', {'data-testid': 'title', 'class': 'f6431b446c'})
name = name_elem.text.strip() if name_elem else "無資料"
price_elem = hotel.find('span', {
'data-testid': 'price-and-discounted-price',
'class': 'f6431b446c'
})
price = price_elem.text.strip() if price_elem else "無資料"
price = price.replace('TWD', '').replace(' ', '').replace(',', '').strip()
rating_container = hotel.find('div', {'class': 'a3b8729ab1'})
rating_elem = rating_container.find('div', {'class': 'ac4a7896c7'}) if rating_container else None
rating = rating_elem.text.strip() if rating_elem else "無評分"
description_elem = hotel.find('div', {'data-testid': 'recommended-units'})
if description_elem:
room_type = description_elem.find('h4', {'class': 'abf093bdfe'})
room_type = room_type.text.strip() if room_type else ""
bed_info = description_elem.find('div', {'class': 'abf093bdfe'})
bed_info = bed_info.text.strip() if bed_info else ""
cancellation = description_elem.find('strong', text='可免費取消')
cancellation = "可免費取消" if cancellation else ""
payment = description_elem.find('strong', text='無需訂金')
payment = "無需訂金" if payment else ""
description = f"{room_type} | {bed_info} | {cancellation} | {payment}".strip(' |')
else:
description = "無說明"
hotels_data.append({
'飯店名稱': name,
'價格': price,
'評分': rating,
'說明': description
})
except AttributeError:
continue
df = pd.DataFrame(hotels_data).drop_duplicates()
return df
except requests.RequestException:
return pd.DataFrame()
def clean_rating(x):
if pd.isna(x) or x == '無評分':
return 0
return float(str(x).replace('分數', '').replace('分', ''))
def create_price_rating_scatter(df):
fig = px.scatter(
df,
x='價格',
y='評分',
text='飯店名稱',
size='價格',
color='評分',
title='台南飯店價格與評分關係圖',
labels={'價格': '房價 (TWD)', '評分': '評分 (0-10)'}
)
fig.update_layout(height=600, title_x=0.5)
return fig
def create_price_distribution(df):
fig = go.Figure()
fig.add_trace(go.Histogram(
x=df['價格'],
name='價格分布',
nbinsx=10,
marker_color='rgb(55, 83, 109)'
))
fig.add_trace(go.Box(
x=df['價格'],
name='價格箱型圖',
marker_color='rgb(26, 118, 255)'
))
fig.update_layout(title_text='台南飯店價格分布', title_x=0.5, height=500)
return fig
def upload_to_google_sheets(df):
creds = Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPE)
gs = gspread.authorize(creds)
sheet = gs.open_by_url(SPREADSHEET_URL)
worksheet = sheet.get_worksheet(0)
df1 = df.astype(str)
worksheet.update([df1.columns.values.tolist()] + df1.values.tolist())
return "資料已成功上傳到 Google Sheet!"
if mode == "資料爬取":
st.header("爬取台南飯店資料")
if st.button("開始爬取"):
df = scrape_booking_hotel()
if not df.empty:
st.dataframe(df)
df.to_csv('booking_hotels_tainan.csv', index=False, encoding='utf-8-sig')
st.success("資料爬取成功,已儲存至 booking_hotels_tainan.csv")
else:
st.error("未能成功爬取資料")
elif mode == "資料視覺化":
st.header("分析與視覺化")
try:
df = pd.read_csv('booking_hotels_tainan.csv', encoding='utf-8-sig')
df['價格'] = pd.to_numeric(df['價格'], errors='coerce')
df['評分'] = df['評分'].apply(clean_rating)
st.plotly_chart(create_price_rating_scatter(df))
st.plotly_chart(create_price_distribution(df))
except Exception as e:
st.error(f"讀取或分析資料時發生錯誤:{e}")
elif mode == "上傳至 Google Sheet":
st.header("上傳資料至 Google Sheet")
try:
df = pd.read_csv('booking_hotels_tainan.csv', encoding='utf-8-sig')
result = upload_to_google_sheets(df)
st.success(result)
except Exception as e:
st.error(f"上傳資料時發生錯誤:{e}")