Rooobert's picture
Update app.py
36d76bc verified
import streamlit as st
import requests
from bs4 import BeautifulSoup
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from google.oauth2.service_account import Credentials
import gspread
# 爬取 Booking.com 台南飯店數據
def scrape_booking_hotel():
url = "https://www.booking.com/searchresults.zh-tw.html"
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept-Language': 'zh-TW,zh;q=0.9,en-US;q=0.8,en;q=0.7',
}
params = {
'ss': '台南',
'checkin': '2024-11-16',
'checkout': '2024-11-17',
'group_adults': '2',
'no_rooms': '1',
'group_children': '0',
'dest_id': '-2637868',
'dest_type': 'city'
}
try:
response = requests.get(url, headers=headers, params=params)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
hotels_data = []
hotel_cards = soup.find_all('div', {'data-testid': 'property-card'})
for hotel in hotel_cards:
try:
name = hotel.find('div', {'data-testid': 'title', 'class': 'f6431b446c'}).text.strip() or "無資料"
price = hotel.find('span', {'data-testid': 'price-and-discounted-price', 'class': 'f6431b446c'}).text.strip() or "無資料"
price = price.replace('TWD', '').replace(' ', '').replace(',', '').strip()
price = float(price) if price.replace('.', '', 1).isdigit() else None # 價格轉為浮點數
rating_container = hotel.find('div', {'class': 'a3b8729ab1'})
rating = rating_container.find('div', {'class': 'ac4a7896c7'}).text.strip() if rating_container else "無評分"
rating = float(rating) if rating.replace('.', '', 1).isdigit() else None # 評分轉為浮點數
description_elem = hotel.find('div', {'data-testid': 'recommended-units'})
if description_elem:
room_type = description_elem.find('h4', {'class': 'abf093bdfe'}).text.strip() if description_elem.find('h4', {'class': 'abf093bdfe'}) else ""
bed_info = description_elem.find('div', {'class': 'abf093bdfe'}).text.strip() if description_elem.find('div', {'class': 'abf093bdfe'}) else ""
cancellation = "可免費取消" if description_elem.find('strong', string='可免費取消') else ""
payment = "無需訂金" if description_elem.find('strong', string='無需訂金') else ""
description = f"{room_type} | {bed_info} | {cancellation} | {payment}".strip(' |')
else:
description = "無說明"
hotels_data.append({
'飯店名稱': name,
'價格': price,
'評分': rating,
'說明': description
})
except AttributeError as e:
print(f"解析飯店資訊時發生錯誤: {e}")
continue
df = pd.DataFrame(hotels_data)
df = df.drop_duplicates()
return df
except requests.RequestException as e:
print(f"請求發生錯誤: {e}")
return pd.DataFrame()
# 散佈圖
def create_price_rating_scatter(df):
fig = px.scatter(
df,
x='價格',
y='評分',
text='飯店名稱',
size='價格',
color='評分',
title='台南飯店價格與評分關係圖',
labels={'價格': '房價 (TWD)', '評分': '評分 (0-10)'}
)
fig.update_traces(textposition='top center', marker=dict(sizeref=2.*max(df['價格'])/(40.**2)))
fig.update_layout(height=600, showlegend=True, title_x=0.5, title_font_size=20)
return fig
# 價格分佈圖
def create_price_distribution(df):
fig = go.Figure()
fig.add_trace(go.Histogram(x=df['價格'], name='價格分布', nbinsx=10, marker_color='rgb(55, 83, 109)'))
fig.add_trace(go.Box(x=df['價格'], name='價格箱型圖', marker_color='rgb(26, 118, 255)'))
fig.update_layout(title_text='台南飯店價格分布', title_x=0.5, title_font_size=20, xaxis_title='價格 (TWD)', yaxis_title='數量', height=500, bargap=0.2, showlegend=True)
return fig
# 更新 Google Sheet
def update_google_sheet(df):
scope = ['https://www.googleapis.com/auth/spreadsheets']
creds = Credentials.from_service_account_file("realtime-441511-f5708eabdf26.json", scopes=scope)
gs = gspread.authorize(creds)
sheet = gs.open_by_url('https://docs.google.com/spreadsheets/d/1tIsXCbB8P6ZxdnZNnv7S7BBWbbT7lrSjW990zG-vQAA/edit?gid=0#gid=0')
worksheet = sheet.get_worksheet(0)
worksheet.update([df.columns.values.tolist()] + df.astype(str).values.tolist())
st.success("Data updated to Google Sheet successfully!")
# 主函數
def main():
st.set_page_config(page_title="Booking.com Hotel Analysis")
st.title("Booking.com Hotel Analysis")
df = scrape_booking_hotel()
# 顯示資料表格
st.subheader("Hotel Data")
st.dataframe(df)
# 顯示散佈圖
st.subheader("Price vs Rating Scatter Plot")
scatter_fig = create_price_rating_scatter(df)
st.plotly_chart(scatter_fig)
# 顯示價格分布圖
st.subheader("Price Distribution")
dist_fig = create_price_distribution(df)
st.plotly_chart(dist_fig)
# Google Sheet 更新
if st.button("Update Google Sheet"):
update_google_sheet(df)
if __name__ == "__main__":
main()