Spaces:
Sleeping
Sleeping
File size: 8,274 Bytes
d3a3afe 4805603 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.impute import SimpleImputer
from sklearn.ensemble import (
RandomForestClassifier, AdaBoostClassifier,
StackingClassifier, VotingClassifier
)
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.metrics import (
accuracy_score, roc_auc_score,
confusion_matrix, classification_report
)
from imblearn.over_sampling import SMOTE
class HRTurnoverPredictor:
def __init__(self, data):
self.df = data
self.X, self.y = self.preprocess_data()
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(
self.X, self.y, test_size=0.2, random_state=42, stratify=self.y
)
self.scaler = StandardScaler()
self.X_train_scaled = self.scaler.fit_transform(self.X_train)
self.X_test_scaled = self.scaler.transform(self.X_test)
self.smote = SMOTE(random_state=42)
self.X_train_resampled, self.y_train_resampled = self.smote.fit_resample(
self.X_train_scaled, self.y_train
)
self.models = self.initialize_models()
self.results = None
def preprocess_data(self):
df = self.df.copy()
categorical_cols = ['MaritalDesc', 'CitizenDesc', 'RaceDesc', 'Department', 'Position', 'RecruitmentSource']
for col in categorical_cols:
df[col] = LabelEncoder().fit_transform(df[col].astype(str))
features = [
'Salary', 'PerfScoreID', 'EngagementSurvey', 'EmpSatisfaction',
'SpecialProjectsCount', 'DaysLateLast30', 'Absences',
'MaritalDesc', 'CitizenDesc', 'RaceDesc', 'Department', 'Position', 'RecruitmentSource'
]
X = df[features]
y = df['Termd'].astype(int)
imputer = SimpleImputer(strategy='median')
X = pd.DataFrame(imputer.fit_transform(X), columns=X.columns)
return X, y
def initialize_models(self):
base_models = {
'Logistic Regression': LogisticRegression(random_state=42),
'Decision Tree': DecisionTreeClassifier(random_state=42),
'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42),
'XGBoost': XGBClassifier(n_estimators=100, random_state=42),
'AdaBoost': AdaBoostClassifier(random_state=42),
'SVM': SVC(probability=True, random_state=42)
}
base_estimators = [
('lr', LogisticRegression(random_state=42)),
('rf', RandomForestClassifier(random_state=42)),
('xgb', XGBClassifier(random_state=42))
]
stacking_classifier = StackingClassifier(
estimators=base_estimators,
final_estimator=LogisticRegression(),
cv=5
)
base_models['Stacking'] = stacking_classifier
voting_classifier = VotingClassifier(
estimators=list(base_models.items())[:-1], # Exclude Stacking
voting='soft'
)
base_models['Voting'] = voting_classifier
return base_models
def train_models(self):
results = {}
for name, model in self.models.items():
model.fit(self.X_train_resampled, self.y_train_resampled)
y_pred = model.predict(self.X_test_scaled)
y_pred_proba = model.predict_proba(self.X_test_scaled)[:, 1]
acc = accuracy_score(self.y_test, y_pred)
roc_auc = roc_auc_score(self.y_test, y_pred_proba)
results[name] = {
'Accuracy': acc,
'ROC AUC': roc_auc,
'Confusion Matrix': confusion_matrix(self.y_test, y_pred),
'Classification Report': classification_report(self.y_test, y_pred, output_dict=True),
'Predicted Probabilities': y_pred_proba
}
self.results = results
return results
def get_feature_importance(self):
rf_model = self.models['Random Forest']
if hasattr(rf_model, "feature_importances_"):
importances = rf_model.feature_importances_
feature_importance = pd.DataFrame({
"Feature": self.X.columns,
"Importance": importances
}).sort_values(by="Importance", ascending=False)
return feature_importance
return None
def main():
st.set_page_config(page_title="HR Turnover Prediction", layout="wide")
st.title("🏢 Employee Turnover Prediction Dashboard")
# Sidebar for file upload
st.sidebar.header("Upload HR Dataset")
uploaded_file = st.sidebar.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
# Read the CSV file
df = pd.read_csv(uploaded_file)
st.sidebar.success("File successfully uploaded!")
# Create predictor
predictor = HRTurnoverPredictor(df)
# Tabs for different analyses
tab1, tab2, tab3, tab4 = st.tabs([
"Model Performance",
"Confusion Matrices",
"Feature Importance",
"Model Insights"
])
with tab1:
st.header("Model Performance Comparison")
# Train models
results = predictor.train_models()
# Create performance DataFrame
perf_df = pd.DataFrame([
{
'Model': model_name,
'Accuracy': metrics['Accuracy'],
'ROC AUC': metrics['ROC AUC']
}
for model_name, metrics in results.items()
]).sort_values('ROC AUC', ascending=False)
# Display performance table
st.dataframe(perf_df)
# Bar plot of model performance
fig, ax = plt.subplots(figsize=(10, 6))
perf_df.plot(x='Model', y=['Accuracy', 'ROC AUC'], kind='bar', ax=ax)
plt.title("Model Performance Comparison")
plt.xlabel("Model")
plt.ylabel("Score")
plt.tight_layout()
st.pyplot(fig)
with tab2:
st.header("Confusion Matrices")
# Create a grid of confusion matrices
fig, axes = plt.subplots(3, 3, figsize=(15, 15))
axes = axes.ravel()
for i, (model_name, metrics) in enumerate(results.items()):
cm = metrics['Confusion Matrix']
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", cbar=False, ax=axes[i])
axes[i].set_title(f"{model_name} Confusion Matrix")
axes[i].set_xlabel("Predicted Label")
axes[i].set_ylabel("True Label")
plt.tight_layout()
st.pyplot(fig)
with tab3:
st.header("Feature Importance")
# Get and display feature importance
feature_importance = predictor.get_feature_importance()
if feature_importance is not None:
st.dataframe(feature_importance)
# Feature importance plot
fig, ax = plt.subplots(figsize=(10, 6))
feature_importance.plot(x='Feature', y='Importance', kind='bar', ax=ax)
plt.title("Random Forest Feature Importance")
plt.xlabel("Features")
plt.ylabel("Importance")
plt.tight_layout()
st.pyplot(fig)
with tab4:
st.header("Model Insights")
# Display detailed classification reports
for model_name, metrics in results.items():
st.subheader(f"{model_name} Classification Report")
report_df = pd.DataFrame(metrics['Classification Report']).transpose()
st.dataframe(report_df)
if __name__ == '__main__':
main()# |