Rooobert commited on
Commit
adcdd13
·
verified ·
1 Parent(s): e5cf58d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -45
app.py CHANGED
@@ -1,72 +1,122 @@
1
  import os
2
  import gradio as gr
3
- from langchain_core.prompts import PromptTemplate
4
  from langchain_community.document_loaders import PyPDFLoader
5
- from langchain_google_genai import ChatGoogleGenerativeAI
6
- import google.generativeai as genai
7
- from langchain.chains.question_answering import load_qa_chain
8
  import torch
9
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
 
 
 
10
 
11
- # Configure Gemini API
12
- genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
13
-
14
- # Load Mistral model
15
  model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base"
16
- mistral_tokenizer = AutoTokenizer.from_pretrained(model_path)
17
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
18
  dtype = torch.bfloat16
19
- mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  def initialize(file_path, question):
22
  try:
23
- model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
24
- prompt_template = """Answer the question as precise as possible using the provided context. If the answer is
25
- not contained in the context, say "answer not available in context" \n\n
26
- Context: \n {context}?\n
27
- Question: \n {question} \n
28
- Answer:
29
- """
30
  prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
31
 
32
  if os.path.exists(file_path):
33
  pdf_loader = PyPDFLoader(file_path)
34
  pages = pdf_loader.load_and_split()
35
- context = "\n".join(str(page.page_content) for page in pages[:30])
36
- stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
37
- stuff_answer = stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True)
38
- gemini_answer = stuff_answer['output_text']
39
 
40
- # Use Mistral model for additional text generation
41
- mistral_prompt = f"Based on this answer: {gemini_answer}\nGenerate a follow-up question:"
42
- mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device)
43
- with torch.no_grad():
44
- mistral_outputs = mistral_model.generate(mistral_inputs, max_length=50)
45
- mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True)
46
 
47
- combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_output}"
48
- return combined_output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  else:
50
- return "Error: Unable to process the document. Please ensure the PDF file is valid."
51
  except Exception as e:
52
- return f"An error occurred: {str(e)}"
53
-
54
- # Define Gradio Interface
55
- input_file = gr.File(label="Upload PDF File")
56
- input_question = gr.Textbox(label="Ask about the document")
57
- output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral")
58
 
 
59
  def pdf_qa(file, question):
60
  if file is None:
61
- return "Please upload a PDF file first."
62
  return initialize(file.name, question)
63
 
64
- # Create Gradio Interface
65
- gr.Interface(
66
  fn=pdf_qa,
67
- inputs=[input_file, input_question],
68
- outputs=output_text,
69
- title="RAG Knowledge Retrieval using Gemini API and Mistral Model",
70
- description="Upload a PDF file and ask questions about the content."
71
- ).launch()
72
- #
 
 
 
 
 
 
1
  import os
2
  import gradio as gr
 
3
  from langchain_community.document_loaders import PyPDFLoader
 
 
 
4
  import torch
5
  from transformers import AutoTokenizer, AutoModelForCausalLM
6
+ from langchain_community.llms import HuggingFacePipeline
7
+ from langchain.chains.question_answering import load_qa_chain
8
+ from langchain_core.prompts import PromptTemplate
9
+ from transformers import pipeline
10
 
11
+ # 載入 Mistral 模型
 
 
 
12
  model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base"
 
13
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
14
  dtype = torch.bfloat16
15
+ print(f"使用設備: {device}")
16
+
17
+ # 初始化 tokenizer
18
+ mistral_tokenizer = AutoTokenizer.from_pretrained(model_path)
19
+
20
+ # 初始化模型
21
+ mistral_model = AutoModelForCausalLM.from_pretrained(
22
+ model_path,
23
+ torch_dtype=dtype,
24
+ device_map=device,
25
+ low_cpu_mem_usage=True
26
+ )
27
+
28
+ # 創建 pipeline
29
+ text_generation_pipeline = pipeline(
30
+ "text-generation",
31
+ model=mistral_model,
32
+ tokenizer=mistral_tokenizer,
33
+ max_length=512,
34
+ temperature=0.3,
35
+ top_p=0.95,
36
+ device_map=device
37
+ )
38
+
39
+ # 為 pipeline 創建 LangChain 包裝器
40
+ llm = HuggingFacePipeline(pipeline=text_generation_pipeline)
41
 
42
  def initialize(file_path, question):
43
  try:
44
+ prompt_template = """根據提供的上下文盡可能準確地回答問題。如果上下文中沒有包含答案,請說「上下文中沒有提供答案」\n\n
45
+ 上下文: \n {context}?\n
46
+ 問題: \n {question} \n
47
+ 回答:
48
+ """
 
 
49
  prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
50
 
51
  if os.path.exists(file_path):
52
  pdf_loader = PyPDFLoader(file_path)
53
  pages = pdf_loader.load_and_split()
 
 
 
 
54
 
55
+ # 限制上下文以避免超出令牌限制
56
+ max_pages = 5 # 根據模型容量和文檔長度調整
57
+ context = "\n".join(str(page.page_content) for page in pages[:max_pages])
 
 
 
58
 
59
+ try:
60
+ # 使用 Mistral 創建問答鏈
61
+ stuff_chain = load_qa_chain(llm, chain_type="stuff", prompt=prompt)
62
+
63
+ # 使用有限的頁面獲取答案
64
+ stuff_answer = stuff_chain(
65
+ {"input_documents": pages[:max_pages], "question": question, "context": context},
66
+ return_only_outputs=True
67
+ )
68
+
69
+ main_answer = stuff_answer['output_text']
70
+
71
+ # 生成後續問題
72
+ follow_up_prompt = f"根據這個回答: {main_answer}\n生成一個相關的後續問題:"
73
+ follow_up_inputs = mistral_tokenizer.encode(follow_up_prompt, return_tensors='pt').to(device)
74
+
75
+ with torch.no_grad():
76
+ follow_up_outputs = mistral_model.generate(
77
+ follow_up_inputs,
78
+ max_length=256,
79
+ temperature=0.7,
80
+ top_p=0.9,
81
+ do_sample=True
82
+ )
83
+
84
+ follow_up = mistral_tokenizer.decode(follow_up_outputs[0], skip_special_tokens=True)
85
+
86
+ # 提取問題
87
+ if "後續問題:" in follow_up.lower():
88
+ follow_up = follow_up.split("後續問題:", 1)[1].strip()
89
+
90
+ combined_output = f"回答: {main_answer}\n\n可能的後續問題: {follow_up}"
91
+ return combined_output
92
+
93
+ except Exception as e:
94
+ if "exceeds the maximum token count" in str(e):
95
+ return "錯誤: 文檔太大無法處理。請嘗試使用較小的文檔。"
96
+ else:
97
+ raise e
98
  else:
99
+ return "錯誤: 無法處理文檔。請確保PDF文件存在且有效。"
100
  except Exception as e:
101
+ return f"發生錯誤: {str(e)}"
 
 
 
 
 
102
 
103
+ # 定義 Gradio 界面
104
  def pdf_qa(file, question):
105
  if file is None:
106
+ return "請先上傳PDF文件。"
107
  return initialize(file.name, question)
108
 
109
+ # 創建 Gradio 界面
110
+ demo = gr.Interface(
111
  fn=pdf_qa,
112
+ inputs=[
113
+ gr.File(label="上傳PDF文件", file_types=[".pdf"]),
114
+ gr.Textbox(label="詢問文檔內容", placeholder="這個文檔主要講了什麼?")
115
+ ],
116
+ outputs=gr.Textbox(label="Mistral 回答"),
117
+ title="基於Mistral的PDF問答系統",
118
+ description="上傳PDF文件並提出問題,Mistral模型將分析內容並提供回答和可能的後續問題。"
119
+ )
120
+
121
+ if __name__ == "__main__":
122
+ demo.launch()