Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,108 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
-
import plotly.graph_objects as go
|
3 |
-
from plotly.subplots import make_subplots
|
4 |
-
import pandas as pd
|
5 |
import twstock
|
6 |
-
|
7 |
-
|
8 |
-
def plot_stock_data(stock_symbols):
|
9 |
-
"""
|
10 |
-
繪製股票價格圖表
|
11 |
-
:param stock_symbols: 股票代號列表
|
12 |
-
:return: Plotly figure
|
13 |
-
"""
|
14 |
-
# 創建子圖
|
15 |
-
fig = make_subplots(
|
16 |
-
rows=len(stock_symbols),
|
17 |
-
cols=1,
|
18 |
-
subplot_titles=[f"股價走勢: {symbol}" for symbol in stock_symbols],
|
19 |
-
vertical_spacing=0.05,
|
20 |
-
specs=[[{"secondary_y": True}] for _ in stock_symbols]
|
21 |
-
)
|
22 |
-
|
23 |
-
# 為每個股票繪製圖形
|
24 |
-
for idx, symbol in enumerate(stock_symbols, 1):
|
25 |
-
try:
|
26 |
-
# 獲取股票數據
|
27 |
-
stock = twstock.Stock(symbol)
|
28 |
-
recent_data = stock.fetch_31() # 抓取最近 31 天的交易數據
|
29 |
-
|
30 |
-
if not recent_data:
|
31 |
-
st.warning(f"無法找到 {symbol} 的股票數據")
|
32 |
-
continue
|
33 |
-
|
34 |
-
# 準備繪圖數據
|
35 |
-
df = pd.DataFrame([
|
36 |
-
{
|
37 |
-
"Date": data.date,
|
38 |
-
"Open": data.open,
|
39 |
-
"High": data.high,
|
40 |
-
"Low": data.low,
|
41 |
-
"Close": data.close,
|
42 |
-
"Volume": data.transaction
|
43 |
-
}
|
44 |
-
for data in recent_data
|
45 |
-
])
|
46 |
-
df['Date'] = pd.to_datetime(df['Date'])
|
47 |
-
df.set_index('Date', inplace=True)
|
48 |
-
|
49 |
-
# 添加蠟燭圖
|
50 |
-
fig.add_trace(
|
51 |
-
go.Candlestick(
|
52 |
-
x=df.index,
|
53 |
-
open=df['Open'],
|
54 |
-
high=df['High'],
|
55 |
-
low=df['Low'],
|
56 |
-
close=df['Close'],
|
57 |
-
name=f'{symbol} 價格'
|
58 |
-
),
|
59 |
-
row=idx, col=1
|
60 |
-
)
|
61 |
-
|
62 |
-
# 添加成交量柱狀圖
|
63 |
-
fig.add_trace(
|
64 |
-
go.Bar(
|
65 |
-
x=df.index,
|
66 |
-
y=df['Volume'],
|
67 |
-
name=f'{symbol} 成交量',
|
68 |
-
opacity=0.3
|
69 |
-
),
|
70 |
-
row=idx, col=1,
|
71 |
-
secondary_y=True
|
72 |
-
)
|
73 |
-
|
74 |
-
# 添加移動平均線
|
75 |
-
for ma_days in [5, 20]:
|
76 |
-
ma = df['Close'].rolling(window=ma_days).mean()
|
77 |
-
fig.add_trace(
|
78 |
-
go.Scatter(
|
79 |
-
x=df.index,
|
80 |
-
y=ma,
|
81 |
-
name=f'{symbol} MA{ma_days}',
|
82 |
-
line=dict(width=1)
|
83 |
-
),
|
84 |
-
row=idx, col=1
|
85 |
-
)
|
86 |
-
|
87 |
-
except Exception as e:
|
88 |
-
st.error(f"處理 {symbol} 時發生錯誤: {str(e)}")
|
89 |
-
|
90 |
-
# 更新布局
|
91 |
-
fig.update_layout(
|
92 |
-
height=400 * len(stock_symbols),
|
93 |
-
title_text="台股分析圖",
|
94 |
-
showlegend=True,
|
95 |
-
xaxis_rangeslider_visible=False,
|
96 |
-
template="plotly_white"
|
97 |
-
)
|
98 |
-
|
99 |
-
# 更新軸標籤
|
100 |
-
for i in range(1, len(stock_symbols) + 1):
|
101 |
-
fig.update_xaxes(title_text="日期", row=i, col=1)
|
102 |
-
fig.update_yaxes(title_text="價格 (TWD)", row=i, col=1)
|
103 |
-
fig.update_yaxes(title_text="成交量", row=i, col=1, secondary_y=True)
|
104 |
-
|
105 |
-
return fig
|
106 |
|
107 |
def fetch_recent_stock_data(stock_code):
|
108 |
"""
|
@@ -131,12 +30,28 @@ def fetch_recent_stock_data(stock_code):
|
|
131 |
for data in recent_data
|
132 |
]
|
133 |
df = pd.DataFrame(data_list)
|
|
|
134 |
return df
|
135 |
|
136 |
except Exception as e:
|
137 |
st.error(f"發生錯誤: {e}")
|
138 |
return None
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
def main():
|
141 |
st.set_page_config(page_title="台股分析工具", page_icon=":chart_with_upwards_trend:", layout="wide")
|
142 |
|
@@ -144,13 +59,13 @@ def main():
|
|
144 |
|
145 |
# 側邊欄設置
|
146 |
with st.sidebar:
|
147 |
-
st.header("
|
148 |
|
149 |
# 股票代碼輸入
|
150 |
-
|
151 |
-
"股票代號
|
152 |
-
value="2330
|
153 |
-
placeholder="例如: 2330
|
154 |
)
|
155 |
|
156 |
# 股票分析頁籤
|
@@ -159,52 +74,47 @@ def main():
|
|
159 |
with tab1:
|
160 |
# 股價走勢圖
|
161 |
if st.button("繪製股價走勢圖"):
|
162 |
-
#
|
163 |
-
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
168 |
|
169 |
with tab2:
|
170 |
# 近期交易數據
|
171 |
st.subheader("個股近期交易數據")
|
172 |
|
173 |
-
single_stock_code = st.text_input(
|
174 |
-
"請輸入股票代碼",
|
175 |
-
placeholder="例如: 2330"
|
176 |
-
)
|
177 |
-
|
178 |
if st.button("查詢交易數據"):
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
with col3:
|
198 |
-
st.metric("最低價", f"{df['Low'].min():.2f}")
|
199 |
-
|
200 |
-
# 匯出 CSV
|
201 |
-
csv_data = df.to_csv(index=False).encode('utf-8-sig')
|
202 |
-
st.download_button(
|
203 |
-
label="下載CSV",
|
204 |
-
data=csv_data,
|
205 |
-
file_name=f"{single_stock_code}_recent_30days.csv",
|
206 |
-
mime="text/csv"
|
207 |
-
)
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
main()
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
2 |
import twstock
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def fetch_recent_stock_data(stock_code):
|
7 |
"""
|
|
|
30 |
for data in recent_data
|
31 |
]
|
32 |
df = pd.DataFrame(data_list)
|
33 |
+
df['Date'] = pd.to_datetime(df['Date'])
|
34 |
return df
|
35 |
|
36 |
except Exception as e:
|
37 |
st.error(f"發生錯誤: {e}")
|
38 |
return None
|
39 |
|
40 |
+
def plot_stock_price(df):
|
41 |
+
"""
|
42 |
+
使用 matplotlib 繪製股價走勢
|
43 |
+
"""
|
44 |
+
plt.figure(figsize=(12, 6))
|
45 |
+
plt.plot(df['Date'], df['Close'], label='收盤價')
|
46 |
+
plt.plot(df['Date'], df['Close'].rolling(window=5).mean(), label='5日移動平均', linestyle='--')
|
47 |
+
plt.title('股價走勢')
|
48 |
+
plt.xlabel('日期')
|
49 |
+
plt.ylabel('股價')
|
50 |
+
plt.legend()
|
51 |
+
plt.xticks(rotation=45)
|
52 |
+
plt.tight_layout()
|
53 |
+
return plt
|
54 |
+
|
55 |
def main():
|
56 |
st.set_page_config(page_title="台股分析工具", page_icon=":chart_with_upwards_trend:", layout="wide")
|
57 |
|
|
|
59 |
|
60 |
# 側邊欄設置
|
61 |
with st.sidebar:
|
62 |
+
st.header("股票分析")
|
63 |
|
64 |
# 股票代碼輸入
|
65 |
+
stock_code = st.text_input(
|
66 |
+
"股票代號",
|
67 |
+
value="2330",
|
68 |
+
placeholder="例如: 2330"
|
69 |
)
|
70 |
|
71 |
# 股票分析頁籤
|
|
|
74 |
with tab1:
|
75 |
# 股價走勢圖
|
76 |
if st.button("繪製股價走勢圖"):
|
77 |
+
# 獲取股票數據
|
78 |
+
df = fetch_recent_stock_data(stock_code)
|
79 |
|
80 |
+
if df is not None:
|
81 |
+
# 繪製股價圖
|
82 |
+
fig = plot_stock_price(df)
|
83 |
+
st.pyplot(fig)
|
84 |
|
85 |
with tab2:
|
86 |
# 近期交易數據
|
87 |
st.subheader("個股近期交易數據")
|
88 |
|
|
|
|
|
|
|
|
|
|
|
89 |
if st.button("查詢交易數據"):
|
90 |
+
# 獲取近期股票數據
|
91 |
+
df = fetch_recent_stock_data(stock_code)
|
92 |
+
|
93 |
+
if df is not None:
|
94 |
+
# 顯示數據
|
95 |
+
st.dataframe(df)
|
96 |
+
|
97 |
+
# 統計資訊
|
98 |
+
st.subheader("基本統計")
|
99 |
+
col1, col2, col3 = st.columns(3)
|
100 |
+
|
101 |
+
with col1:
|
102 |
+
st.metric("平均收盤價", f"{df['Close'].mean():.2f}")
|
103 |
|
104 |
+
with col2:
|
105 |
+
st.metric("最高價", f"{df['High'].max():.2f}")
|
106 |
+
|
107 |
+
with col3:
|
108 |
+
st.metric("最低價", f"{df['Low'].min():.2f}")
|
109 |
+
|
110 |
+
# 匯出 CSV
|
111 |
+
csv_data = df.to_csv(index=False).encode('utf-8-sig')
|
112 |
+
st.download_button(
|
113 |
+
label="下載CSV",
|
114 |
+
data=csv_data,
|
115 |
+
file_name=f"{stock_code}_recent_30days.csv",
|
116 |
+
mime="text/csv"
|
117 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
if __name__ == "__main__":
|
120 |
main()
|