Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import yfinance as yf
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
from plotly.subplots import make_subplots
|
5 |
+
import pandas as pd
|
6 |
+
import twstock
|
7 |
+
from datetime import datetime, timedelta
|
8 |
+
|
9 |
+
def plot_stock_data(stock_symbols, period='1y'):
|
10 |
+
"""
|
11 |
+
繪製股票價格圖表
|
12 |
+
:param stock_symbols: 股票代號列表
|
13 |
+
:param period: 時間區間
|
14 |
+
:return: Plotly figure
|
15 |
+
"""
|
16 |
+
# 創建子圖
|
17 |
+
fig = make_subplots(
|
18 |
+
rows=len(stock_symbols),
|
19 |
+
cols=1,
|
20 |
+
subplot_titles=[f"股價走勢: {symbol}" for symbol in stock_symbols],
|
21 |
+
vertical_spacing=0.05,
|
22 |
+
specs=[[{"secondary_y": True}] for _ in stock_symbols]
|
23 |
+
)
|
24 |
+
|
25 |
+
# 為每個股票繪製圖形
|
26 |
+
for idx, symbol in enumerate(stock_symbols, 1):
|
27 |
+
try:
|
28 |
+
# 獲取股票數據
|
29 |
+
stock = yf.Ticker(symbol)
|
30 |
+
df = stock.history(period=period)
|
31 |
+
|
32 |
+
if df.empty:
|
33 |
+
st.warning(f"無法找到 {symbol} 的股票數據")
|
34 |
+
continue
|
35 |
+
|
36 |
+
# 添加蠟燭圖
|
37 |
+
fig.add_trace(
|
38 |
+
go.Candlestick(
|
39 |
+
x=df.index,
|
40 |
+
open=df['Open'],
|
41 |
+
high=df['High'],
|
42 |
+
low=df['Low'],
|
43 |
+
close=df['Close'],
|
44 |
+
name=f'{symbol} 價格'
|
45 |
+
),
|
46 |
+
row=idx, col=1
|
47 |
+
)
|
48 |
+
|
49 |
+
# 添加成交量柱狀圖
|
50 |
+
fig.add_trace(
|
51 |
+
go.Bar(
|
52 |
+
x=df.index,
|
53 |
+
y=df['Volume'],
|
54 |
+
name=f'{symbol} 成交量',
|
55 |
+
opacity=0.3
|
56 |
+
),
|
57 |
+
row=idx, col=1,
|
58 |
+
secondary_y=True
|
59 |
+
)
|
60 |
+
|
61 |
+
# 添加移動平均線
|
62 |
+
for ma_days in [5, 20, 60]:
|
63 |
+
ma = df['Close'].rolling(window=ma_days).mean()
|
64 |
+
fig.add_trace(
|
65 |
+
go.Scatter(
|
66 |
+
x=df.index,
|
67 |
+
y=ma,
|
68 |
+
name=f'{symbol} MA{ma_days}',
|
69 |
+
line=dict(width=1)
|
70 |
+
),
|
71 |
+
row=idx, col=1
|
72 |
+
)
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
st.error(f"處理 {symbol} 時發生錯誤: {str(e)}")
|
76 |
+
|
77 |
+
# 更新布局
|
78 |
+
fig.update_layout(
|
79 |
+
height=400 * len(stock_symbols),
|
80 |
+
title_text="台股分析圖",
|
81 |
+
showlegend=True,
|
82 |
+
xaxis_rangeslider_visible=False,
|
83 |
+
template="plotly_white"
|
84 |
+
)
|
85 |
+
|
86 |
+
# 更新軸標籤
|
87 |
+
for i in range(1, len(stock_symbols) + 1):
|
88 |
+
fig.update_xaxes(title_text="日期", row=i, col=1)
|
89 |
+
fig.update_yaxes(title_text="價格 (TWD)", row=i, col=1)
|
90 |
+
fig.update_yaxes(title_text="成交量", row=i, col=1, secondary_y=True)
|
91 |
+
|
92 |
+
return fig
|
93 |
+
|
94 |
+
def fetch_recent_stock_data(stock_code):
|
95 |
+
"""
|
96 |
+
使用 twstock 獲取近期股票交易數據
|
97 |
+
"""
|
98 |
+
try:
|
99 |
+
stock = twstock.Stock(stock_code)
|
100 |
+
recent_data = stock.fetch_31() # 抓取最近 31 天的交易數據
|
101 |
+
|
102 |
+
if not recent_data:
|
103 |
+
st.warning(f"無法找到 {stock_code} 的交易數據。")
|
104 |
+
return None
|
105 |
+
|
106 |
+
# 將數據整理為 DataFrame 格式
|
107 |
+
data_list = [
|
108 |
+
{
|
109 |
+
"Date": data.date.strftime('%Y-%m-%d'),
|
110 |
+
"Open": data.open,
|
111 |
+
"High": data.high,
|
112 |
+
"Low": data.low,
|
113 |
+
"Close": data.close,
|
114 |
+
"Transaction": data.transaction,
|
115 |
+
"Capacity": data.capacity,
|
116 |
+
"Turnover": data.turnover
|
117 |
+
}
|
118 |
+
for data in recent_data
|
119 |
+
]
|
120 |
+
df = pd.DataFrame(data_list)
|
121 |
+
return df
|
122 |
+
|
123 |
+
except Exception as e:
|
124 |
+
st.error(f"發生錯誤: {e}")
|
125 |
+
return None
|
126 |
+
|
127 |
+
def main():
|
128 |
+
st.set_page_config(page_title="台股分析工具", page_icon=":chart_with_upwards_trend:", layout="wide")
|
129 |
+
|
130 |
+
st.title("🚀 台股分析工具")
|
131 |
+
|
132 |
+
# 側邊欄設置
|
133 |
+
with st.sidebar:
|
134 |
+
st.header("股票分析設定")
|
135 |
+
|
136 |
+
# 股票代碼輸入
|
137 |
+
stock_input = st.text_input(
|
138 |
+
"股票代號 (用逗號分隔)",
|
139 |
+
value="2330.TW,2454.TW",
|
140 |
+
placeholder="例如: 2330.TW,2454.TW"
|
141 |
+
)
|
142 |
+
|
143 |
+
# 時間區間選擇
|
144 |
+
period_select = st.selectbox(
|
145 |
+
"選擇時間區間",
|
146 |
+
["1mo", "3mo", "6mo", "1y", "2y", "5y", "max"],
|
147 |
+
index=3 # 預設為 1y
|
148 |
+
)
|
149 |
+
|
150 |
+
# 股票分析頁籤
|
151 |
+
tab1, tab2 = st.tabs(["股價走勢圖", "近期交易數據"])
|
152 |
+
|
153 |
+
with tab1:
|
154 |
+
# 股價走勢圖
|
155 |
+
if st.button("繪製股價走勢圖"):
|
156 |
+
# 處理股票代號
|
157 |
+
stocks = [s.strip() for s in stock_input.split(',')]
|
158 |
+
stocks = [f"{s}.TW" if not s.endswith('.TW') and s.isdigit() else s for s in stocks]
|
159 |
+
|
160 |
+
# 創建圖表
|
161 |
+
fig = plot_stock_data(stocks, period_select)
|
162 |
+
st.plotly_chart(fig, use_container_width=True)
|
163 |
+
|
164 |
+
with tab2:
|
165 |
+
# 近期交易數據
|
166 |
+
st.subheader("個股近期交易數據")
|
167 |
+
|
168 |
+
single_stock_code = st.text_input(
|
169 |
+
"請輸入股票代碼",
|
170 |
+
placeholder="例如: 2330"
|
171 |
+
)
|
172 |
+
|
173 |
+
if st.button("查詢交易數據"):
|
174 |
+
if single_stock_code:
|
175 |
+
# 獲取近期股票數據
|
176 |
+
df = fetch_recent_stock_data(single_stock_code)
|
177 |
+
|
178 |
+
if df is not None:
|
179 |
+
# 顯示數據
|
180 |
+
st.dataframe(df)
|
181 |
+
|
182 |
+
# 統計資訊
|
183 |
+
st.subheader("基本統計")
|
184 |
+
col1, col2, col3 = st.columns(3)
|
185 |
+
|
186 |
+
with col1:
|
187 |
+
st.metric("平均收盤價", f"{df['Close'].mean():.2f}")
|
188 |
+
|
189 |
+
with col2:
|
190 |
+
st.metric("最高價", f"{df['High'].max():.2f}")
|
191 |
+
|
192 |
+
with col3:
|
193 |
+
st.metric("最低價", f"{df['Low'].min():.2f}")
|
194 |
+
|
195 |
+
# 匯出 CSV
|
196 |
+
csv_data = df.to_csv(index=False).encode('utf-8-sig')
|
197 |
+
st.download_button(
|
198 |
+
label="下載CSV",
|
199 |
+
data=csv_data,
|
200 |
+
file_name=f"{single_stock_code}_recent_30days.csv",
|
201 |
+
mime="text/csv"
|
202 |
+
)
|
203 |
+
|
204 |
+
if __name__ == "__main__":
|
205 |
+
main()
|