Spaces:
Runtime error
Runtime error
| import itertools | |
| from typing import Any, Callable, Dict, Optional, Union, List | |
| import spacy | |
| import torch | |
| from diffusers import StableDiffusionPipeline, AutoencoderKL, UNet2DConditionModel | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker | |
| from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import ( | |
| EXAMPLE_DOC_STRING, | |
| ) | |
| from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_attend_and_excite import ( | |
| AttentionStore, | |
| AttendExciteCrossAttnProcessor, | |
| ) | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import ( | |
| logging, | |
| replace_example_docstring, | |
| ) | |
| from transformers import CLIPTextModel, CLIPTokenizer, CLIPFeatureExtractor | |
| from compute_loss import get_attention_map_index_to_wordpiece, split_indices, calculate_positive_loss, calculate_negative_loss, get_indices, start_token, end_token, \ | |
| align_wordpieces_indices, extract_attribution_indices | |
| logger = logging.get_logger(__name__) | |
| class SynGenDiffusionPipeline(StableDiffusionPipeline): | |
| def __init__(self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPFeatureExtractor, | |
| requires_safety_checker: bool = True, | |
| ): | |
| super().__init__(vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, | |
| requires_safety_checker) | |
| self.parser = spacy.load("en_core_web_trf") | |
| def _aggregate_and_get_attention_maps_per_token(self): | |
| attention_maps = self.attention_store.aggregate_attention( | |
| from_where=("up", "down", "mid"), | |
| ) | |
| attention_maps_list = _get_attention_maps_list( | |
| attention_maps=attention_maps | |
| ) | |
| return attention_maps_list | |
| def _update_latent( | |
| latents: torch.Tensor, loss: torch.Tensor, step_size: float | |
| ) -> torch.Tensor: | |
| """Update the latent according to the computed loss.""" | |
| grad_cond = torch.autograd.grad( | |
| loss.requires_grad_(True), [latents], retain_graph=True | |
| )[0] | |
| latents = latents - step_size * grad_cond | |
| return latents | |
| def register_attention_control(self): | |
| attn_procs = {} | |
| cross_att_count = 0 | |
| for name in self.unet.attn_processors.keys(): | |
| if name.startswith("mid_block"): | |
| place_in_unet = "mid" | |
| elif name.startswith("up_blocks"): | |
| place_in_unet = "up" | |
| elif name.startswith("down_blocks"): | |
| place_in_unet = "down" | |
| else: | |
| continue | |
| cross_att_count += 1 | |
| attn_procs[name] = AttendExciteCrossAttnProcessor( | |
| attnstore=self.attention_store, place_in_unet=place_in_unet | |
| ) | |
| self.unet.set_attn_processor(attn_procs) | |
| self.attention_store.num_att_layers = cross_att_count | |
| # Based on StableDiffusionPipeline.__call__ . New code is annotated with NEW. | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| syngen_step_size: int = 20, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
| Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
| syngen_step_size (`int`, *optional*, default to 20): | |
| Controls the step size of each SynGen update. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds = self._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| ) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # NEW - stores the attention calculated in the unet | |
| self.attention_store = AttentionStore() | |
| self.register_attention_control() | |
| # NEW | |
| text_embeddings = ( | |
| prompt_embeds[batch_size * num_images_per_prompt:] if do_classifier_free_guidance else prompt_embeds | |
| ) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # NEW | |
| latents = self._syngen_step( | |
| latents, | |
| text_embeddings, | |
| t, | |
| i, | |
| syngen_step_size, | |
| cross_attention_kwargs, | |
| prompt, | |
| max_iter_to_alter=25, | |
| ) | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, **extra_step_kwargs | |
| ).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| if output_type == "latent": | |
| image = latents | |
| has_nsfw_concept = None | |
| elif output_type == "pil": | |
| # 8. Post-processing | |
| image = self.decode_latents(latents) | |
| # 9. Run safety checker | |
| image, has_nsfw_concept = self.run_safety_checker( | |
| image, device, prompt_embeds.dtype | |
| ) | |
| # 10. Convert to PIL | |
| image = self.numpy_to_pil(image) | |
| else: | |
| # 8. Post-processing | |
| image = self.decode_latents(latents) | |
| # 9. Run safety checker | |
| image, has_nsfw_concept = self.run_safety_checker( | |
| image, device, prompt_embeds.dtype | |
| ) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput( | |
| images=image, nsfw_content_detected=has_nsfw_concept | |
| ) | |
| def _syngen_step( | |
| self, | |
| latents, | |
| text_embeddings, | |
| t, | |
| i, | |
| step_size, | |
| cross_attention_kwargs, | |
| prompt, | |
| max_iter_to_alter=25, | |
| ): | |
| with torch.enable_grad(): | |
| latents = latents.clone().detach().requires_grad_(True) | |
| updated_latents = [] | |
| for latent, text_embedding in zip(latents, text_embeddings): | |
| # Forward pass of denoising with text conditioning | |
| latent = latent.unsqueeze(0) | |
| text_embedding = text_embedding.unsqueeze(0) | |
| self.unet( | |
| latent, | |
| t, | |
| encoder_hidden_states=text_embedding, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ).sample | |
| self.unet.zero_grad() | |
| # Get attention maps | |
| attention_maps = self._aggregate_and_get_attention_maps_per_token() | |
| loss = self._compute_loss(attention_maps=attention_maps, prompt=prompt) | |
| # Perform gradient update | |
| if i < max_iter_to_alter: | |
| if loss != 0: | |
| latent = self._update_latent( | |
| latents=latent, loss=loss, step_size=step_size | |
| ) | |
| logger.info(f"Iteration {i} | Loss: {loss:0.4f}") | |
| updated_latents.append(latent) | |
| latents = torch.cat(updated_latents, dim=0) | |
| return latents | |
| def _compute_loss( | |
| self, attention_maps: List[torch.Tensor], prompt: Union[str, List[str]] | |
| ) -> torch.Tensor: | |
| attn_map_idx_to_wp = get_attention_map_index_to_wordpiece(self.tokenizer, prompt) | |
| loss = self._attribution_loss(attention_maps, prompt, attn_map_idx_to_wp) | |
| return loss | |
| def _attribution_loss( | |
| self, | |
| attention_maps: List[torch.Tensor], | |
| prompt: Union[str, List[str]], | |
| attn_map_idx_to_wp, | |
| ) -> torch.Tensor: | |
| subtrees_indices = self._extract_attribution_indices(prompt) | |
| loss = 0 | |
| for subtree_indices in subtrees_indices: | |
| noun, modifier = split_indices(subtree_indices) | |
| all_subtree_pairs = list(itertools.product(noun, modifier)) | |
| positive_loss, negative_loss = self._calculate_losses( | |
| attention_maps, | |
| all_subtree_pairs, | |
| subtree_indices, | |
| attn_map_idx_to_wp, | |
| ) | |
| loss += positive_loss | |
| loss += negative_loss | |
| return loss | |
| def _calculate_losses( | |
| self, | |
| attention_maps, | |
| all_subtree_pairs, | |
| subtree_indices, | |
| attn_map_idx_to_wp, | |
| ): | |
| positive_loss = [] | |
| negative_loss = [] | |
| for pair in all_subtree_pairs: | |
| noun, modifier = pair | |
| positive_loss.append( | |
| calculate_positive_loss(attention_maps, modifier, noun) | |
| ) | |
| negative_loss.append( | |
| calculate_negative_loss( | |
| attention_maps, modifier, noun, subtree_indices, attn_map_idx_to_wp | |
| ) | |
| ) | |
| positive_loss = sum(positive_loss) | |
| negative_loss = sum(negative_loss) | |
| return positive_loss, negative_loss | |
| def _align_indices(self, prompt, spacy_pairs): | |
| wordpieces2indices = get_indices(self.tokenizer, prompt) | |
| paired_indices = [] | |
| collected_spacy_indices = ( | |
| set() | |
| ) # helps track recurring nouns across different relations (i.e., cases where there is more than one instance of the same word) | |
| for pair in spacy_pairs: | |
| curr_collected_wp_indices = ( | |
| [] | |
| ) # helps track which nouns and amods were added to the current pair (this is useful in sentences with repeating amod on the same relation (e.g., "a red red red bear")) | |
| for member in pair: | |
| for idx, wp in wordpieces2indices.items(): | |
| if wp in [start_token, end_token]: | |
| continue | |
| wp = wp.replace("</w>", "") | |
| if member.text == wp: | |
| if idx not in curr_collected_wp_indices and idx not in collected_spacy_indices: | |
| curr_collected_wp_indices.append(idx) | |
| break | |
| # take care of wordpieces that are split up | |
| elif member.text.startswith(wp) and wp != member.text: # can maybe be while loop | |
| wp_indices = align_wordpieces_indices( | |
| wordpieces2indices, idx, member.text | |
| ) | |
| # check if all wp_indices are not already in collected_spacy_indices | |
| if wp_indices and (wp_indices not in curr_collected_wp_indices) and all([wp_idx not in collected_spacy_indices for wp_idx in wp_indices]): | |
| curr_collected_wp_indices.append(wp_indices) | |
| break | |
| for collected_idx in curr_collected_wp_indices: | |
| if isinstance(collected_idx, list): | |
| for idx in collected_idx: | |
| collected_spacy_indices.add(idx) | |
| else: | |
| collected_spacy_indices.add(collected_idx) | |
| paired_indices.append(curr_collected_wp_indices) | |
| return paired_indices | |
| def _extract_attribution_indices(self, prompt): | |
| pairs = extract_attribution_indices(prompt, self.parser) | |
| paired_indices = self._align_indices(prompt, pairs) | |
| return paired_indices | |
| def _get_attention_maps_list( | |
| attention_maps: torch.Tensor | |
| ) -> List[torch.Tensor]: | |
| attention_maps *= 100 | |
| attention_maps_list = [ | |
| attention_maps[:, :, i] for i in range(attention_maps.shape[2]) | |
| ] | |
| return attention_maps_list | |