File size: 13,278 Bytes
201ab98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
082752e
201ab98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import os
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
import sys
from pathlib import Path
import time
import uuid
import tempfile
import itertools
from typing import *
import atexit
from concurrent.futures import ThreadPoolExecutor
import shutil

import click


@click.command(help='Web demo')
@click.option('--share', is_flag=True, help='Whether to run the app in shared mode.')
@click.option('--pretrained', 'pretrained_model_name_or_path', default=None, help='The name or path of the pre-trained model.')
@click.option('--version', 'model_version', default='v2', help='The version of the model.')
def main(share: bool, pretrained_model_name_or_path: str, model_version: str, use_fp16: bool = True):
    print("Import modules...")
    # Lazy import
    import cv2
    import torch
    import numpy as np
    import trimesh
    import trimesh.visual
    from PIL import Image
    import gradio as gr
    try:
        import spaces   # This is for deployment at huggingface.co/spaces
        HUGGINFACE_SPACES_INSTALLED = True
    except ImportError:
        HUGGINFACE_SPACES_INSTALLED = False

    import utils3d
    from moge.utils.io import write_normal
    from moge.utils.vis import colorize_depth, colorize_normal
    from moge.model import import_model_class_by_version
    from moge.utils.geometry_numpy import depth_occlusion_edge_numpy
    from moge.utils.tools import timeit

    print("Load model...")
    if pretrained_model_name_or_path is None:
        DEFAULT_PRETRAINED_MODEL_FOR_EACH_VERSION = {
            "v1": "Ruicheng/moge-vitl",
            "v2": "Ruicheng/moge-2-vitl-normal",
        }
        pretrained_model_name_or_path = DEFAULT_PRETRAINED_MODEL_FOR_EACH_VERSION[model_version]
    model = import_model_class_by_version(model_version).from_pretrained(pretrained_model_name_or_path).cuda().eval()
    if use_fp16:
        model.half()
    thread_pool_executor = ThreadPoolExecutor(max_workers=1)

    def delete_later(path: Union[str, os.PathLike], delay: int = 300):
        def _delete():
            try: 
                os.remove(path) 
            except FileNotFoundError:
                pass
        def _wait_and_delete():
            time.sleep(delay)
            _delete(path)
        thread_pool_executor.submit(_wait_and_delete)
        atexit.register(_delete)

    # Inference on GPU. 
    @(spaces.GPU if HUGGINFACE_SPACES_INSTALLED else lambda x: x)
    def run_with_gpu(image: np.ndarray, resolution_level: int, apply_mask: bool) -> Dict[str, np.ndarray]:
        image_tensor = torch.tensor(image, dtype=torch.float32 if not use_fp16 else torch.float16, device=torch.device('cuda')).permute(2, 0, 1) / 255
        output = model.infer(image_tensor, apply_mask=apply_mask, resolution_level=resolution_level, use_fp16=use_fp16)
        output = {k: v.cpu().numpy() for k, v in output.items()}
        return output

    # Full inference pipeline
    def run(image: np.ndarray, max_size: int = 800, resolution_level: str = 'High',  apply_mask: bool = True, remove_edge: bool = True, request: gr.Request = None):
        larger_size = max(image.shape[:2])
        if larger_size > max_size:
            scale = max_size / larger_size
            image = cv2.resize(image, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_AREA)

        height, width = image.shape[:2]

        resolution_level_int = {'Low': 0, 'Medium': 5, 'High': 9, 'Ultra': 18}.get(resolution_level, 9)
        output = run_with_gpu(image, resolution_level_int, apply_mask)

        points, depth, mask, normal = output['points'], output['depth'], output['mask'], output.get('normal', None)

        if remove_edge:
            mask_cleaned = mask & ~utils3d.numpy.depth_edge(depth, rtol=0.04)
        else:
            mask_cleaned = mask
        
        results = {
            **output,
            'mask_cleaned': mask_cleaned,
            'image': image
        }

        # depth & normal visualization
        depth_vis = colorize_depth(depth)
        if normal is not None:
            normal_vis = colorize_normal(normal)
        else:
            normal_vis = gr.update(label="Normal map (not avalable for this model)")

        # mesh & pointcloud
        if normal is None:
            faces, vertices, vertex_colors, vertex_uvs = utils3d.numpy.image_mesh(
                points,
                image.astype(np.float32) / 255,
                utils3d.numpy.image_uv(width=width, height=height),
                mask=mask_cleaned,
                tri=True
            )
            vertex_normals = None
        else:
            faces, vertices, vertex_colors, vertex_uvs, vertex_normals = utils3d.numpy.image_mesh(
                points,
                image.astype(np.float32) / 255,
                utils3d.numpy.image_uv(width=width, height=height),
                normal,
                mask=mask_cleaned,
                tri=True
            )
        vertices = vertices * np.array([1, -1, -1], dtype=np.float32) 
        vertex_uvs = vertex_uvs * np.array([1, -1], dtype=np.float32) + np.array([0, 1], dtype=np.float32)
        if vertex_normals is not None:
            vertex_normals = vertex_normals * np.array([1, -1, -1], dtype=np.float32)

        tempdir = Path(tempfile.gettempdir(), 'moge')
        tempdir.mkdir(exist_ok=True)
        output_path = Path(tempdir, request.session_hash)
        shutil.rmtree(output_path, ignore_errors=True)
        output_path.mkdir(exist_ok=True, parents=True)
        trimesh.Trimesh(
            vertices=vertices,
            faces=faces, 
            vertex_normals=vertex_normals,
            visual = trimesh.visual.texture.TextureVisuals(
                uv=vertex_uvs, 
                material=trimesh.visual.material.PBRMaterial(
                    baseColorTexture=Image.fromarray(image),
                    metallicFactor=0.5,
                    roughnessFactor=1.0
                )
            ),
            process=False
        ).export(output_path / 'mesh.glb')
        pointcloud = trimesh.PointCloud(
            vertices=vertices, 
            colors=vertex_colors,
        )
        pointcloud.vertex_normals = vertex_normals
        pointcloud.export(output_path / 'pointcloud.ply', vertex_normal=True)
        trimesh.PointCloud(
            vertices=vertices, 
            colors=vertex_colors,
        ).export(output_path / 'pointcloud.glb', include_normals=True)
        cv2.imwrite(str(output_path /'mask.png'), mask.astype(np.uint8) * 255)
        cv2.imwrite(str(output_path / 'depth.exr'), depth.astype(np.float32), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])
        cv2.imwrite(str(output_path / 'points.exr'), cv2.cvtColor(points.astype(np.float32), cv2.COLOR_RGB2BGR), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])
        if normal is not None:
            cv2.imwrite(str(output_path / 'normal.exr'), cv2.cvtColor(normal.astype(np.float32) * np.array([1, -1, -1], dtype=np.float32), cv2.COLOR_RGB2BGR), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])

        files = ['mesh.glb', 'pointcloud.ply', 'depth.exr', 'points.exr', 'mask.png']
        if normal is not None:
            files.append('normal.exr')

        for f in files:
            delete_later(output_path / f)

        # FOV
        intrinsics = results['intrinsics']
        fov_x, fov_y = utils3d.numpy.intrinsics_to_fov(intrinsics)
        fov_x, fov_y = np.rad2deg([fov_x, fov_y])

        # messages
        viewer_message = f'**Note:** Inference has been completed. It may take a few seconds to download the 3D model.'
        if resolution_level != 'Ultra':
            depth_message = f'**Note:** Want sharper depth map? Try increasing the `maximum image size` and setting the `inference resolution level` to `Ultra` in the settings.'
        else:
            depth_message = ""

        return (
            results,
            depth_vis,
            normal_vis, 
            output_path / 'pointcloud.glb', 
            [(output_path / f).as_posix() for f in files if (output_path / f).exists()],
            f'- **Horizontal FOV: {fov_x:.1f}°**. \n - **Vertical FOV: {fov_y:.1f}°**',
            viewer_message,
            depth_message
        )

    def reset_measure(results: Dict[str, np.ndarray]):
        return [results['image'], [], ""]


    def measure(results: Dict[str, np.ndarray], measure_points: List[Tuple[int, int]], event: gr.SelectData):
        point2d = event.index[0], event.index[1]
        measure_points.append(point2d)

        image = results['image'].copy()
        for p in measure_points:
            image = cv2.circle(image, p, radius=5, color=(255, 0, 0), thickness=2)

        depth_text = ""
        for i, p in enumerate(measure_points):
            d = results['depth'][p[1], p[0]]
            depth_text += f"- **P{i + 1} depth: {d:.2f}m.**\n"

        if len(measure_points) == 2:
            point1, point2 = measure_points
            image = cv2.line(image, point1, point2, color=(255, 0, 0), thickness=2)
            distance = np.linalg.norm(results['points'][point1[1], point1[0]] - results['points'][point2[1], point2[0]])
            measure_points = []

            distance_text = f"- **Distance: {distance:.2f}m**"

            text = depth_text + distance_text
            return [image, measure_points, text]
        else:
            return [image, measure_points, depth_text]
        
    print("Create Gradio app...")
    with gr.Blocks() as demo:
        gr.Markdown(
f'''
<div align="center">
<h1> Turn a 2D image into 3D with MoGe <a title="Github" href="https://github.com/microsoft/MoGe" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> <img src="https://img.shields.io/github/stars/microsoft/MoGe?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars"> </a> </h1>
</div>
''')
        results = gr.State(value=None)
        measure_points = gr.State(value=[])

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(type="numpy", image_mode="RGB", label="Input Image")
                with gr.Accordion(label="Settings", open=False):
                    max_size_input = gr.Number(value=800, label="Maximum Image Size", precision=0, minimum=256, maximum=2048)
                    resolution_level = gr.Dropdown(['Low', 'Medium', 'High', 'Ultra'], label="Inference Resolution Level", value='High')
                    apply_mask = gr.Checkbox(value=True, label="Apply mask")
                    remove_edges = gr.Checkbox(value=True, label="Remove edges")
                submit_btn = gr.Button("Submit", variant='primary')

            with gr.Column():
                with gr.Tabs():
                    with gr.Tab("3D View"):
                        viewer_message = gr.Markdown("")
                        model_3d = gr.Model3D(display_mode="solid", label="3D Point Map", clear_color=[1.0, 1.0, 1.0, 1.0], height="60vh")
                        fov = gr.Markdown()
                    with gr.Tab("Depth"):
                        depth_message = gr.Markdown("")
                        depth_map = gr.Image(type="numpy", label="Colorized Depth Map", format='png', interactive=False)
                    with gr.Tab("Normal", interactive=hasattr(model, 'normal_head')):
                        normal_map = gr.Image(type="numpy", label="Normal Map", format='png', interactive=False)
                    with gr.Tab("Measure", interactive=hasattr(model, 'scale_head')):
                        gr.Markdown("### Click on the image to measure the distance between two points. \n"
                         "**Note:** Metric scale is most reliable for typical indoor or street scenes, and may degrade for contents unfamiliar to the model (e.g., stylized or close-up images).")
                        measure_image = gr.Image(type="numpy", show_label=False, format='webp', interactive=False, sources=[])
                        measure_text = gr.Markdown("")
                    with gr.Tab("Download"):
                        files = gr.File(type='filepath', label="Output Files")
        
        if Path('example_images').exists():
            example_image_paths = sorted(list(itertools.chain(*[Path('example_images').glob(f'*.{ext}') for ext in ['jpg', 'png', 'jpeg', 'JPG', 'PNG', 'JPEG']])))
            examples = gr.Examples(
                examples = example_image_paths,
                inputs=input_image,
                label="Examples"
            )

        submit_btn.click(
            fn=lambda: [None, None, None, None, None, "", "", ""],
            outputs=[results, depth_map, normal_map, model_3d, files, fov, viewer_message, depth_message]
        ).then(
            fn=run,
            inputs=[input_image, max_size_input, resolution_level, apply_mask, remove_edges],
            outputs=[results, depth_map, normal_map, model_3d, files, fov, viewer_message, depth_message]
        ).then(
            fn=reset_measure,
            inputs=[results],
            outputs=[measure_image, measure_points, measure_text]
        )

        measure_image.select(
            fn=measure,
            inputs=[results, measure_points],
            outputs=[measure_image, measure_points, measure_text]
        )
    
    demo.launch(share=share)


if __name__ == '__main__':
    main()