File size: 8,913 Bytes
201ab98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
from pathlib import Path
import sys
if (_package_root := str(Path(__file__).absolute().parents[2])) not in sys.path:
    sys.path.insert(0, _package_root)
from typing import *
import itertools
import json
import warnings


import click


@click.command(help='Inference script')
@click.option('--input', '-i', 'input_path', type=click.Path(exists=True), help='Input image or folder path. "jpg" and "png" are supported.')
@click.option('--fov_x', 'fov_x_', type=float, default=None, help='If camera parameters are known, set the horizontal field of view in degrees. Otherwise, MoGe will estimate it.')
@click.option('--output', '-o', 'output_path', default='./output', type=click.Path(), help='Output folder path')
@click.option('--pretrained', 'pretrained_model_name_or_path', type=str, default=None, help='Pretrained model name or path. If not provided, the corresponding default model will be chosen.')
@click.option('--version', 'model_version', type=click.Choice(['v1', 'v2']), default='v2', help='Model version. Defaults to "v2"')
@click.option('--device', 'device_name', type=str, default='cuda', help='Device name (e.g. "cuda", "cuda:0", "cpu"). Defaults to "cuda"')
@click.option('--fp16', 'use_fp16', is_flag=True, help='Use fp16 precision for much faster inference.')
@click.option('--resize', 'resize_to', type=int, default=None, help='Resize the image(s) & output maps to a specific size. Defaults to None (no resizing).')
@click.option('--resolution_level', type=int, default=9, help='An integer [0-9] for the resolution level for inference. \
Higher value means more tokens and the finer details will be captured, but inference can be slower. \
Defaults to 9. Note that it is irrelevant to the output size, which is always the same as the input size. \
`resolution_level` actually controls `num_tokens`. See `num_tokens` for more details.')
@click.option('--num_tokens', type=int, default=None, help='number of tokens used for inference. A integer in the (suggested) range of `[1200, 2500]`. \
`resolution_level` will be ignored if `num_tokens` is provided. Default: None')
@click.option('--threshold', type=float, default=0.01, help='Threshold for removing edges. Defaults to 0.01. Smaller value removes more edges. "inf" means no thresholding.')
@click.option('--maps', 'save_maps_', is_flag=True, help='Whether to save the output maps (image, point map, depth map, normal map, mask) and fov.')
@click.option('--glb', 'save_glb_', is_flag=True, help='Whether to save the output as a.glb file. The color will be saved as a texture.')
@click.option('--ply', 'save_ply_', is_flag=True, help='Whether to save the output as a.ply file. The color will be saved as vertex colors.')
@click.option('--show', 'show', is_flag=True, help='Whether show the output in a window. Note that this requires pyglet<2 installed as required by trimesh.')
def main(
    input_path: str,
    fov_x_: float,
    output_path: str,
    pretrained_model_name_or_path: str,
    model_version: str,
    device_name: str,
    use_fp16: bool,
    resize_to: int,
    resolution_level: int,
    num_tokens: int,
    threshold: float,
    save_maps_: bool,
    save_glb_: bool,
    save_ply_: bool,
    show: bool,
):  
    import cv2
    import numpy as np
    import torch
    from PIL import Image
    from tqdm import tqdm
    import trimesh
    import trimesh.visual
    import click

    from moge.model import import_model_class_by_version
    from moge.utils.io import save_glb, save_ply
    from moge.utils.vis import colorize_depth, colorize_normal
    from moge.utils.geometry_numpy import depth_occlusion_edge_numpy
    import utils3d

    device = torch.device(device_name)

    include_suffices = ['jpg', 'png', 'jpeg', 'JPG', 'PNG', 'JPEG']
    if Path(input_path).is_dir():
        image_paths = sorted(itertools.chain(*(Path(input_path).rglob(f'*.{suffix}') for suffix in include_suffices)))
    else:
        image_paths = [Path(input_path)]
    
    if len(image_paths) == 0:
        raise FileNotFoundError(f'No image files found in {input_path}')

    if pretrained_model_name_or_path is None:
        DEFAULT_PRETRAINED_MODEL_FOR_EACH_VERSION = {
            "v1": "Ruicheng/moge-vitl",
            "v2": "Ruicheng/moge-2-vitl-normal",
        }
        pretrained_model_name_or_path = DEFAULT_PRETRAINED_MODEL_FOR_EACH_VERSION[model_version]
    model = import_model_class_by_version(model_version).from_pretrained(pretrained_model_name_or_path).to(device).eval()
    if use_fp16:
        model.half()
    
    if not any([save_maps_, save_glb_, save_ply_]):
        warnings.warn('No output format specified. Defaults to saving all. Please use "--maps", "--glb", or "--ply" to specify the output.')
        save_maps_ = save_glb_ = save_ply_ = True

    for image_path in (pbar := tqdm(image_paths, desc='Inference', disable=len(image_paths) <= 1)):
        image = cv2.cvtColor(cv2.imread(str(image_path)), cv2.COLOR_BGR2RGB)
        height, width = image.shape[:2]
        if resize_to is not None:
            height, width = min(resize_to, int(resize_to * height / width)), min(resize_to, int(resize_to * width / height))
            image = cv2.resize(image, (width, height), cv2.INTER_AREA)
        image_tensor = torch.tensor(image / 255, dtype=torch.float32, device=device).permute(2, 0, 1)

        # Inference
        output = model.infer(image_tensor, fov_x=fov_x_, resolution_level=resolution_level, num_tokens=num_tokens, use_fp16=use_fp16)
        points, depth, mask, intrinsics = output['points'].cpu().numpy(), output['depth'].cpu().numpy(), output['mask'].cpu().numpy(), output['intrinsics'].cpu().numpy()
        normal = output['normal'].cpu().numpy() if 'normal' in output else None

        save_path = Path(output_path, image_path.relative_to(input_path).parent, image_path.stem)
        save_path.mkdir(exist_ok=True, parents=True)

        # Save images / maps
        if save_maps_:
            cv2.imwrite(str(save_path / 'image.jpg'), cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
            cv2.imwrite(str(save_path / 'depth_vis.png'), cv2.cvtColor(colorize_depth(depth), cv2.COLOR_RGB2BGR))
            cv2.imwrite(str(save_path / 'depth.exr'), depth, [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])
            cv2.imwrite(str(save_path / 'mask.png'), (mask * 255).astype(np.uint8))
            cv2.imwrite(str(save_path / 'points.exr'), cv2.cvtColor(points, cv2.COLOR_RGB2BGR), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])
            if normal is not None:
                cv2.imwrite(str(save_path / 'normal.png'), cv2.cvtColor(colorize_normal(normal), cv2.COLOR_RGB2BGR))
            fov_x, fov_y = utils3d.numpy.intrinsics_to_fov(intrinsics)
            with open(save_path / 'fov.json', 'w') as f:
                json.dump({
                    'fov_x': round(float(np.rad2deg(fov_x)), 2),
                    'fov_y': round(float(np.rad2deg(fov_y)), 2),
                }, f)

        # Export mesh & visulization
        if save_glb_ or save_ply_ or show:
            mask_cleaned = mask & ~utils3d.numpy.depth_edge(depth, rtol=0.04)
            if normal is None:
                faces, vertices, vertex_colors, vertex_uvs = utils3d.numpy.image_mesh(
                    points,
                    image.astype(np.float32) / 255,
                    utils3d.numpy.image_uv(width=width, height=height),
                    mask=mask_cleaned,
                    tri=True
                )
                vertex_normals = None
            else:
                faces, vertices, vertex_colors, vertex_uvs, vertex_normals = utils3d.numpy.image_mesh(
                    points,
                    image.astype(np.float32) / 255,
                    utils3d.numpy.image_uv(width=width, height=height),
                    normal,
                    mask=mask_cleaned,
                    tri=True
                )
            # When exporting the model, follow the OpenGL coordinate conventions:
            # - world coordinate system: x right, y up, z backward.
            # - texture coordinate system: (0, 0) for left-bottom, (1, 1) for right-top.
            vertices, vertex_uvs = vertices * [1, -1, -1], vertex_uvs * [1, -1] + [0, 1]
            if normal is not None:
                vertex_normals = vertex_normals * [1, -1, -1]

        if save_glb_:
            save_glb(save_path / 'mesh.glb', vertices, faces, vertex_uvs, image, vertex_normals)

        if save_ply_:
            save_ply(save_path / 'pointcloud.ply', vertices, np.zeros((0, 3), dtype=np.int32), vertex_colors, vertex_normals)

        if show:
            trimesh.Trimesh(
                vertices=vertices,
                vertex_colors=vertex_colors,
                vertex_normals=vertex_normals,
                faces=faces, 
                process=False
            ).show()  


if __name__ == '__main__':
    main()