File size: 8,913 Bytes
201ab98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
from pathlib import Path
import sys
if (_package_root := str(Path(__file__).absolute().parents[2])) not in sys.path:
sys.path.insert(0, _package_root)
from typing import *
import itertools
import json
import warnings
import click
@click.command(help='Inference script')
@click.option('--input', '-i', 'input_path', type=click.Path(exists=True), help='Input image or folder path. "jpg" and "png" are supported.')
@click.option('--fov_x', 'fov_x_', type=float, default=None, help='If camera parameters are known, set the horizontal field of view in degrees. Otherwise, MoGe will estimate it.')
@click.option('--output', '-o', 'output_path', default='./output', type=click.Path(), help='Output folder path')
@click.option('--pretrained', 'pretrained_model_name_or_path', type=str, default=None, help='Pretrained model name or path. If not provided, the corresponding default model will be chosen.')
@click.option('--version', 'model_version', type=click.Choice(['v1', 'v2']), default='v2', help='Model version. Defaults to "v2"')
@click.option('--device', 'device_name', type=str, default='cuda', help='Device name (e.g. "cuda", "cuda:0", "cpu"). Defaults to "cuda"')
@click.option('--fp16', 'use_fp16', is_flag=True, help='Use fp16 precision for much faster inference.')
@click.option('--resize', 'resize_to', type=int, default=None, help='Resize the image(s) & output maps to a specific size. Defaults to None (no resizing).')
@click.option('--resolution_level', type=int, default=9, help='An integer [0-9] for the resolution level for inference. \
Higher value means more tokens and the finer details will be captured, but inference can be slower. \
Defaults to 9. Note that it is irrelevant to the output size, which is always the same as the input size. \
`resolution_level` actually controls `num_tokens`. See `num_tokens` for more details.')
@click.option('--num_tokens', type=int, default=None, help='number of tokens used for inference. A integer in the (suggested) range of `[1200, 2500]`. \
`resolution_level` will be ignored if `num_tokens` is provided. Default: None')
@click.option('--threshold', type=float, default=0.01, help='Threshold for removing edges. Defaults to 0.01. Smaller value removes more edges. "inf" means no thresholding.')
@click.option('--maps', 'save_maps_', is_flag=True, help='Whether to save the output maps (image, point map, depth map, normal map, mask) and fov.')
@click.option('--glb', 'save_glb_', is_flag=True, help='Whether to save the output as a.glb file. The color will be saved as a texture.')
@click.option('--ply', 'save_ply_', is_flag=True, help='Whether to save the output as a.ply file. The color will be saved as vertex colors.')
@click.option('--show', 'show', is_flag=True, help='Whether show the output in a window. Note that this requires pyglet<2 installed as required by trimesh.')
def main(
input_path: str,
fov_x_: float,
output_path: str,
pretrained_model_name_or_path: str,
model_version: str,
device_name: str,
use_fp16: bool,
resize_to: int,
resolution_level: int,
num_tokens: int,
threshold: float,
save_maps_: bool,
save_glb_: bool,
save_ply_: bool,
show: bool,
):
import cv2
import numpy as np
import torch
from PIL import Image
from tqdm import tqdm
import trimesh
import trimesh.visual
import click
from moge.model import import_model_class_by_version
from moge.utils.io import save_glb, save_ply
from moge.utils.vis import colorize_depth, colorize_normal
from moge.utils.geometry_numpy import depth_occlusion_edge_numpy
import utils3d
device = torch.device(device_name)
include_suffices = ['jpg', 'png', 'jpeg', 'JPG', 'PNG', 'JPEG']
if Path(input_path).is_dir():
image_paths = sorted(itertools.chain(*(Path(input_path).rglob(f'*.{suffix}') for suffix in include_suffices)))
else:
image_paths = [Path(input_path)]
if len(image_paths) == 0:
raise FileNotFoundError(f'No image files found in {input_path}')
if pretrained_model_name_or_path is None:
DEFAULT_PRETRAINED_MODEL_FOR_EACH_VERSION = {
"v1": "Ruicheng/moge-vitl",
"v2": "Ruicheng/moge-2-vitl-normal",
}
pretrained_model_name_or_path = DEFAULT_PRETRAINED_MODEL_FOR_EACH_VERSION[model_version]
model = import_model_class_by_version(model_version).from_pretrained(pretrained_model_name_or_path).to(device).eval()
if use_fp16:
model.half()
if not any([save_maps_, save_glb_, save_ply_]):
warnings.warn('No output format specified. Defaults to saving all. Please use "--maps", "--glb", or "--ply" to specify the output.')
save_maps_ = save_glb_ = save_ply_ = True
for image_path in (pbar := tqdm(image_paths, desc='Inference', disable=len(image_paths) <= 1)):
image = cv2.cvtColor(cv2.imread(str(image_path)), cv2.COLOR_BGR2RGB)
height, width = image.shape[:2]
if resize_to is not None:
height, width = min(resize_to, int(resize_to * height / width)), min(resize_to, int(resize_to * width / height))
image = cv2.resize(image, (width, height), cv2.INTER_AREA)
image_tensor = torch.tensor(image / 255, dtype=torch.float32, device=device).permute(2, 0, 1)
# Inference
output = model.infer(image_tensor, fov_x=fov_x_, resolution_level=resolution_level, num_tokens=num_tokens, use_fp16=use_fp16)
points, depth, mask, intrinsics = output['points'].cpu().numpy(), output['depth'].cpu().numpy(), output['mask'].cpu().numpy(), output['intrinsics'].cpu().numpy()
normal = output['normal'].cpu().numpy() if 'normal' in output else None
save_path = Path(output_path, image_path.relative_to(input_path).parent, image_path.stem)
save_path.mkdir(exist_ok=True, parents=True)
# Save images / maps
if save_maps_:
cv2.imwrite(str(save_path / 'image.jpg'), cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
cv2.imwrite(str(save_path / 'depth_vis.png'), cv2.cvtColor(colorize_depth(depth), cv2.COLOR_RGB2BGR))
cv2.imwrite(str(save_path / 'depth.exr'), depth, [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])
cv2.imwrite(str(save_path / 'mask.png'), (mask * 255).astype(np.uint8))
cv2.imwrite(str(save_path / 'points.exr'), cv2.cvtColor(points, cv2.COLOR_RGB2BGR), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])
if normal is not None:
cv2.imwrite(str(save_path / 'normal.png'), cv2.cvtColor(colorize_normal(normal), cv2.COLOR_RGB2BGR))
fov_x, fov_y = utils3d.numpy.intrinsics_to_fov(intrinsics)
with open(save_path / 'fov.json', 'w') as f:
json.dump({
'fov_x': round(float(np.rad2deg(fov_x)), 2),
'fov_y': round(float(np.rad2deg(fov_y)), 2),
}, f)
# Export mesh & visulization
if save_glb_ or save_ply_ or show:
mask_cleaned = mask & ~utils3d.numpy.depth_edge(depth, rtol=0.04)
if normal is None:
faces, vertices, vertex_colors, vertex_uvs = utils3d.numpy.image_mesh(
points,
image.astype(np.float32) / 255,
utils3d.numpy.image_uv(width=width, height=height),
mask=mask_cleaned,
tri=True
)
vertex_normals = None
else:
faces, vertices, vertex_colors, vertex_uvs, vertex_normals = utils3d.numpy.image_mesh(
points,
image.astype(np.float32) / 255,
utils3d.numpy.image_uv(width=width, height=height),
normal,
mask=mask_cleaned,
tri=True
)
# When exporting the model, follow the OpenGL coordinate conventions:
# - world coordinate system: x right, y up, z backward.
# - texture coordinate system: (0, 0) for left-bottom, (1, 1) for right-top.
vertices, vertex_uvs = vertices * [1, -1, -1], vertex_uvs * [1, -1] + [0, 1]
if normal is not None:
vertex_normals = vertex_normals * [1, -1, -1]
if save_glb_:
save_glb(save_path / 'mesh.glb', vertices, faces, vertex_uvs, image, vertex_normals)
if save_ply_:
save_ply(save_path / 'pointcloud.ply', vertices, np.zeros((0, 3), dtype=np.int32), vertex_colors, vertex_normals)
if show:
trimesh.Trimesh(
vertices=vertices,
vertex_colors=vertex_colors,
vertex_normals=vertex_normals,
faces=faces,
process=False
).show()
if __name__ == '__main__':
main()
|