|
import os |
|
from typing import * |
|
from pathlib import Path |
|
import math |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
import cv2 |
|
import utils3d |
|
|
|
from ..utils import pipeline |
|
from ..utils.geometry_numpy import focal_to_fov_numpy, mask_aware_nearest_resize_numpy, norm3d |
|
from ..utils.io import * |
|
from ..utils.tools import timeit |
|
|
|
|
|
class EvalDataLoaderPipeline: |
|
|
|
def __init__( |
|
self, |
|
path: str, |
|
width: int, |
|
height: int, |
|
split: int = '.index.txt', |
|
drop_max_depth: float = 1000., |
|
num_load_workers: int = 4, |
|
num_process_workers: int = 8, |
|
include_segmentation: bool = False, |
|
include_normal: bool = False, |
|
depth_to_normal: bool = False, |
|
max_segments: int = 100, |
|
min_seg_area: int = 1000, |
|
depth_unit: str = None, |
|
has_sharp_boundary = False, |
|
subset: int = None, |
|
): |
|
filenames = Path(path).joinpath(split).read_text(encoding='utf-8').splitlines() |
|
filenames = filenames[::subset] |
|
self.width = width |
|
self.height = height |
|
self.drop_max_depth = drop_max_depth |
|
self.path = Path(path) |
|
self.filenames = filenames |
|
self.include_segmentation = include_segmentation |
|
self.include_normal = include_normal |
|
self.max_segments = max_segments |
|
self.min_seg_area = min_seg_area |
|
self.depth_to_normal = depth_to_normal |
|
self.depth_unit = depth_unit |
|
self.has_sharp_boundary = has_sharp_boundary |
|
|
|
self.rng = np.random.default_rng(seed=0) |
|
|
|
self.pipeline = pipeline.Sequential([ |
|
self._generator, |
|
pipeline.Parallel([self._load_instance] * num_load_workers), |
|
pipeline.Parallel([self._process_instance] * num_process_workers), |
|
pipeline.Buffer(4) |
|
]) |
|
|
|
def __len__(self): |
|
return math.ceil(len(self.filenames)) |
|
|
|
def _generator(self): |
|
for idx in range(len(self)): |
|
yield idx |
|
|
|
def _load_instance(self, idx): |
|
if idx >= len(self.filenames): |
|
return None |
|
|
|
path = self.path.joinpath(self.filenames[idx]) |
|
|
|
instance = { |
|
'filename': self.filenames[idx], |
|
'width': self.width, |
|
'height': self.height, |
|
} |
|
instance['image'] = read_image(Path(path, 'image.jpg')) |
|
|
|
depth, _ = read_depth(Path(path, 'depth.png')) |
|
instance.update({ |
|
'depth': np.nan_to_num(depth, nan=1, posinf=1, neginf=1), |
|
'depth_mask': np.isfinite(depth), |
|
'depth_mask_inf': np.isinf(depth), |
|
}) |
|
|
|
if self.include_segmentation: |
|
segmentation_mask, segmentation_labels = read_segmentation(Path(path,'segmentation.png')) |
|
instance.update({ |
|
'segmentation_mask': segmentation_mask, |
|
'segmentation_labels': segmentation_labels, |
|
}) |
|
|
|
meta = read_meta(Path(path, 'meta.json')) |
|
instance['intrinsics'] = np.array(meta['intrinsics'], dtype=np.float32) |
|
|
|
return instance |
|
|
|
def _process_instance(self, instance: dict): |
|
if instance is None: |
|
return None |
|
|
|
image, depth, depth_mask, intrinsics = instance['image'], instance['depth'], instance['depth_mask'], instance['intrinsics'] |
|
segmentation_mask, segmentation_labels = instance.get('segmentation_mask', None), instance.get('segmentation_labels', None) |
|
|
|
raw_height, raw_width = image.shape[:2] |
|
raw_horizontal, raw_vertical = abs(1.0 / intrinsics[0, 0]), abs(1.0 / intrinsics[1, 1]) |
|
raw_pixel_w, raw_pixel_h = raw_horizontal / raw_width, raw_vertical / raw_height |
|
tgt_width, tgt_height = instance['width'], instance['height'] |
|
tgt_aspect = tgt_width / tgt_height |
|
|
|
|
|
tgt_horizontal = min(raw_horizontal, raw_vertical * tgt_aspect) |
|
tgt_vertical = tgt_horizontal / tgt_aspect |
|
|
|
|
|
cu, cv = 0.5, 0.5 |
|
direction = utils3d.numpy.unproject_cv(np.array([[cu, cv]], dtype=np.float32), np.array([1.0], dtype=np.float32), intrinsics=intrinsics)[0] |
|
R = utils3d.numpy.rotation_matrix_from_vectors(direction, np.array([0, 0, 1], dtype=np.float32)) |
|
|
|
|
|
corners = np.array([[0, 0], [0, 1], [1, 1], [1, 0]], dtype=np.float32) |
|
corners = np.concatenate([corners, np.ones((4, 1), dtype=np.float32)], axis=1) @ (np.linalg.inv(intrinsics).T @ R.T) |
|
corners = corners[:, :2] / corners[:, 2:3] |
|
|
|
warp_horizontal, warp_vertical = abs(1.0 / intrinsics[0, 0]), abs(1.0 / intrinsics[1, 1]) |
|
for i in range(4): |
|
intersection, _ = utils3d.numpy.ray_intersection( |
|
np.array([0., 0.]), np.array([[tgt_aspect, 1.0], [tgt_aspect, -1.0]]), |
|
corners[i - 1], corners[i] - corners[i - 1], |
|
) |
|
warp_horizontal, warp_vertical = min(warp_horizontal, 2 * np.abs(intersection[:, 0]).min()), min(warp_vertical, 2 * np.abs(intersection[:, 1]).min()) |
|
tgt_horizontal, tgt_vertical = min(tgt_horizontal, warp_horizontal), min(tgt_vertical, warp_vertical) |
|
|
|
|
|
fx, fy = 1.0 / tgt_horizontal, 1.0 / tgt_vertical |
|
tgt_intrinsics = utils3d.numpy.intrinsics_from_focal_center(fx, fy, 0.5, 0.5).astype(np.float32) |
|
|
|
|
|
|
|
tgt_pixel_w, tgt_pixel_h = tgt_horizontal / tgt_width, tgt_vertical / tgt_height |
|
rescaled_w, rescaled_h = int(raw_width * raw_pixel_w / tgt_pixel_w), int(raw_height * raw_pixel_h / tgt_pixel_h) |
|
image = np.array(Image.fromarray(image).resize((rescaled_w, rescaled_h), Image.Resampling.LANCZOS)) |
|
|
|
depth, depth_mask = mask_aware_nearest_resize_numpy(depth, depth_mask, (rescaled_w, rescaled_h)) |
|
distance = norm3d(utils3d.numpy.depth_to_points(depth, intrinsics=intrinsics)) |
|
segmentation_mask = cv2.resize(segmentation_mask, (rescaled_w, rescaled_h), interpolation=cv2.INTER_NEAREST) if segmentation_mask is not None else None |
|
|
|
|
|
transform = intrinsics @ np.linalg.inv(R) @ np.linalg.inv(tgt_intrinsics) |
|
uv_tgt = utils3d.numpy.image_uv(width=tgt_width, height=tgt_height) |
|
pts = np.concatenate([uv_tgt, np.ones((tgt_height, tgt_width, 1), dtype=np.float32)], axis=-1) @ transform.T |
|
uv_remap = pts[:, :, :2] / (pts[:, :, 2:3] + 1e-12) |
|
pixel_remap = utils3d.numpy.uv_to_pixel(uv_remap, width=rescaled_w, height=rescaled_h).astype(np.float32) |
|
|
|
tgt_image = cv2.remap(image, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_LINEAR) |
|
tgt_distance = cv2.remap(distance, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) |
|
tgt_ray_length = utils3d.numpy.unproject_cv(uv_tgt, np.ones_like(uv_tgt[:, :, 0]), intrinsics=tgt_intrinsics) |
|
tgt_ray_length = (tgt_ray_length[:, :, 0] ** 2 + tgt_ray_length[:, :, 1] ** 2 + tgt_ray_length[:, :, 2] ** 2) ** 0.5 |
|
tgt_depth = tgt_distance / (tgt_ray_length + 1e-12) |
|
tgt_depth_mask = cv2.remap(depth_mask.astype(np.uint8), pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) > 0 |
|
tgt_segmentation_mask = cv2.remap(segmentation_mask, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) if segmentation_mask is not None else None |
|
|
|
|
|
max_depth = np.nanquantile(np.where(tgt_depth_mask, tgt_depth, np.nan), 0.01) * self.drop_max_depth |
|
tgt_depth_mask &= tgt_depth <= max_depth |
|
tgt_depth = np.nan_to_num(tgt_depth, nan=0.0) |
|
|
|
if self.depth_unit is not None: |
|
tgt_depth *= self.depth_unit |
|
|
|
if not np.any(tgt_depth_mask): |
|
|
|
tgt_depth_mask = np.ones_like(tgt_depth_mask) |
|
tgt_depth = np.ones_like(tgt_depth) |
|
instance['label_type'] = 'invalid' |
|
|
|
tgt_pts = utils3d.numpy.unproject_cv(uv_tgt, tgt_depth, intrinsics=tgt_intrinsics) |
|
|
|
|
|
if self.include_segmentation and segmentation_mask is not None: |
|
for k in ['undefined', 'unannotated', 'background', 'sky']: |
|
if k in segmentation_labels: |
|
del segmentation_labels[k] |
|
seg_id2count = dict(zip(*np.unique(tgt_segmentation_mask, return_counts=True))) |
|
sorted_labels = sorted(segmentation_labels.keys(), key=lambda x: seg_id2count.get(segmentation_labels[x], 0), reverse=True) |
|
segmentation_labels = {k: segmentation_labels[k] for k in sorted_labels[:self.max_segments] if seg_id2count.get(segmentation_labels[k], 0) >= self.min_seg_area} |
|
|
|
instance.update({ |
|
'image': torch.from_numpy(tgt_image.astype(np.float32) / 255.0).permute(2, 0, 1), |
|
'depth': torch.from_numpy(tgt_depth).float(), |
|
'depth_mask': torch.from_numpy(tgt_depth_mask).bool(), |
|
'intrinsics': torch.from_numpy(tgt_intrinsics).float(), |
|
'points': torch.from_numpy(tgt_pts).float(), |
|
'segmentation_mask': torch.from_numpy(tgt_segmentation_mask).long() if tgt_segmentation_mask is not None else None, |
|
'segmentation_labels': segmentation_labels, |
|
'is_metric': self.depth_unit is not None, |
|
'has_sharp_boundary': self.has_sharp_boundary, |
|
}) |
|
|
|
instance = {k: v for k, v in instance.items() if v is not None} |
|
|
|
return instance |
|
|
|
def start(self): |
|
self.pipeline.start() |
|
|
|
def stop(self): |
|
self.pipeline.stop() |
|
|
|
def __enter__(self): |
|
self.start() |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, traceback): |
|
self.stop() |
|
|
|
def get(self): |
|
return self.pipeline.get() |