|
from typing import * |
|
import fnmatch |
|
|
|
import sympy |
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
def any_match(s: str, patterns: List[str]) -> bool: |
|
return any(fnmatch.fnmatch(s, pat) for pat in patterns) |
|
|
|
|
|
def build_optimizer(model: nn.Module, optimizer_config: Dict[str, Any]) -> torch.optim.Optimizer: |
|
named_param_groups = [ |
|
{ |
|
k: p for k, p in model.named_parameters() if any_match(k, param_group_config['params']['include']) and not any_match(k, param_group_config['params'].get('exclude', [])) |
|
} for param_group_config in optimizer_config['params'] |
|
] |
|
excluded_params = [k for k, p in model.named_parameters() if p.requires_grad and not any(k in named_params for named_params in named_param_groups)] |
|
assert len(excluded_params) == 0, f'The following parameters require grad but are excluded from the optimizer: {excluded_params}' |
|
optimizer_cls = getattr(torch.optim, optimizer_config['type']) |
|
optimizer = optimizer_cls([ |
|
{ |
|
**param_group_config, |
|
'params': list(params.values()), |
|
} for param_group_config, params in zip(optimizer_config['params'], named_param_groups) |
|
]) |
|
return optimizer |
|
|
|
|
|
def parse_lr_lambda(s: str) -> Callable[[int], float]: |
|
epoch = sympy.symbols('epoch') |
|
lr_lambda = sympy.sympify(s) |
|
return sympy.lambdify(epoch, lr_lambda, 'math') |
|
|
|
|
|
def build_lr_scheduler(optimizer: torch.optim.Optimizer, scheduler_config: Dict[str, Any]) -> torch.optim.lr_scheduler._LRScheduler: |
|
if scheduler_config['type'] == "SequentialLR": |
|
child_schedulers = [ |
|
build_lr_scheduler(optimizer, child_scheduler_config) |
|
for child_scheduler_config in scheduler_config['params']['schedulers'] |
|
] |
|
return torch.optim.lr_scheduler.SequentialLR(optimizer, schedulers=child_schedulers, milestones=scheduler_config['params']['milestones']) |
|
elif scheduler_config['type'] == "LambdaLR": |
|
lr_lambda = scheduler_config['params']['lr_lambda'] |
|
if isinstance(lr_lambda, str): |
|
lr_lambda = parse_lr_lambda(lr_lambda) |
|
elif isinstance(lr_lambda, list): |
|
lr_lambda = [parse_lr_lambda(l) for l in lr_lambda] |
|
return torch.optim.lr_scheduler.LambdaLR( |
|
optimizer, |
|
lr_lambda=lr_lambda, |
|
) |
|
else: |
|
scheduler_cls = getattr(torch.optim.lr_scheduler, scheduler_config['type']) |
|
scheduler = scheduler_cls(optimizer, **scheduler_config.get('params', {})) |
|
return scheduler |