# Reference https://github.com/DepthAnything/Depth-Anything-V2/metric_depth import os import sys from typing import * from pathlib import Path import click import torch import torch.nn.functional as F import torchvision.transforms as T import torchvision.transforms.functional as TF import cv2 from moge.test.baseline import MGEBaselineInterface class Baseline(MGEBaselineInterface): def __init__(self, repo_path: str, backbone: str, domain: str, num_tokens: int, device: str): device = torch.device(device) repo_path = os.path.abspath(repo_path) if not Path(repo_path).exists(): raise FileNotFoundError(f'Cannot find the Depth-Anything repository at {repo_path}. Please clone the repository and provide the path to it using the --repo option.') sys.path.append(os.path.join(repo_path, 'metric_depth')) from depth_anything_v2.dpt import DepthAnythingV2 model_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]} } if domain == 'indoor': dataset = 'hypersim' max_depth = 20 elif domain == 'outdoor': dataset = 'vkitti' max_depth = 80 else: raise ValueError(f"Invalid domain: {domain}") model = DepthAnythingV2(**model_configs[backbone], max_depth=max_depth) checkpoint_path = os.path.join(repo_path, f'checkpoints/depth_anything_v2_metric_{dataset}_{backbone}.pth') if not os.path.exists(checkpoint_path): raise FileNotFoundError(f'Cannot find the checkpoint file at {checkpoint_path}. Please download the checkpoint file and place it in the checkpoints directory.') model.load_state_dict(torch.load(checkpoint_path, map_location='cpu', weights_only=True)) model.eval().to(device) self.model = model self.num_tokens = num_tokens self.device = device @click.command() @click.option('--repo', 'repo_path', type=click.Path(), default='../Depth-Anything-V2', help='Path to the Depth-Anything repository.') @click.option('--backbone', type=click.Choice(['vits', 'vitb', 'vitl']), default='vitl', help='Backbone architecture.') @click.option('--domain', type=click.Choice(['indoor', 'outdoor']), help='Domain of the dataset.') @click.option('--num_tokens', type=int, default=None, help='Number of tokens for the ViT model') @click.option('--device', type=str, default='cuda', help='Device to use for inference.') @staticmethod def load(repo_path: str, backbone: str, domain: str, num_tokens: int, device: str): return Baseline(repo_path, backbone, domain, num_tokens, device) @torch.inference_mode() def infer(self, image: torch.Tensor, intrinsics: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]: original_height, original_width = image.shape[-2:] assert intrinsics is None, "Depth-Anything-V2 does not support camera intrinsics input" if image.ndim == 3: image = image.unsqueeze(0) omit_batch_dim = True else: omit_batch_dim = False if self.num_tokens is None: resize_factor = 518 / min(original_height, original_width) expected_width = round(original_width * resize_factor / 14) * 14 expected_height = round(original_height * resize_factor / 14) * 14 else: aspect_ratio = original_width / original_height tokens_rows = round((self.num_tokens * aspect_ratio) ** 0.5) tokens_cols = round((self.num_tokens / aspect_ratio) ** 0.5) expected_width = tokens_cols * 14 expected_height = tokens_rows * 14 image = TF.resize(image, (expected_height, expected_width), interpolation=T.InterpolationMode.BICUBIC, antialias=True) image = TF.normalize(image, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) depth = self.model(image) depth = F.interpolate(depth[:, None], size=(original_height, original_width), mode='bilinear', align_corners=False, antialias=False)[:, 0] if omit_batch_dim: depth = depth.squeeze(0) return { 'depth_metric': depth }