import os os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1' from pathlib import Path import sys if (_package_root := str(Path(__file__).absolute().parents[2])) not in sys.path: sys.path.insert(0, _package_root) import json from pathlib import Path from typing import * import itertools import warnings import click @click.command(context_settings={"allow_extra_args": True, "ignore_unknown_options": True}, help='Inference script for wrapped baselines methods') @click.option('--baseline', 'baseline_code_path', required=True, type=click.Path(), help='Path to the baseline model python code.') @click.option('--input', '-i', 'input_path', type=str, required=True, help='Input image or folder') @click.option('--output', '-o', 'output_path', type=str, default='./output', help='Output folder') @click.option('--size', 'image_size', type=int, default=None, help='Resize input image') @click.option('--skip', is_flag=True, help='Skip existing output') @click.option('--maps', 'save_maps_', is_flag=True, help='Save output point / depth maps') @click.option('--ply', 'save_ply_', is_flag=True, help='Save mesh in PLY format') @click.option('--glb', 'save_glb_', is_flag=True, help='Save mesh in GLB format') @click.option('--threshold', type=float, default=0.03, help='Depth edge detection threshold for saving mesh') @click.pass_context def main(ctx: click.Context, baseline_code_path: str, input_path: str, output_path: str, image_size: int, skip: bool, save_maps_, save_ply_: bool, save_glb_: bool, threshold: float): # Lazy import import cv2 import numpy as np from tqdm import tqdm import torch import utils3d from moge.utils.io import save_ply, save_glb from moge.utils.geometry_numpy import intrinsics_to_fov_numpy from moge.utils.vis import colorize_depth, colorize_depth_affine, colorize_disparity from moge.utils.tools import key_average, flatten_nested_dict, timeit, import_file_as_module from moge.test.baseline import MGEBaselineInterface # Load the baseline model module = import_file_as_module(baseline_code_path, Path(baseline_code_path).stem) baseline_cls: Type[MGEBaselineInterface] = getattr(module, 'Baseline') baseline : MGEBaselineInterface = baseline_cls.load.main(ctx.args, standalone_mode=False) # Input images list include_suffices = ['jpg', 'png', 'jpeg', 'JPG', 'PNG', 'JPEG'] if Path(input_path).is_dir(): image_paths = sorted(itertools.chain(*(Path(input_path).rglob(f'*.{suffix}') for suffix in include_suffices))) else: image_paths = [Path(input_path)] if not any([save_maps_, save_glb_, save_ply_]): warnings.warn('No output format specified. Defaults to saving maps only. Please use "--maps", "--glb", or "--ply" to specify the output.') save_maps_ = True for image_path in (pbar := tqdm(image_paths, desc='Inference', disable=len(image_paths) <= 1)): # Load one image at a time image_np = cv2.cvtColor(cv2.imread(str(image_path)), cv2.COLOR_BGR2RGB) height, width = image_np.shape[:2] if image_size is not None and max(image_np.shape[:2]) > image_size: height, width = min(image_size, int(image_size * height / width)), min(image_size, int(image_size * width / height)) image_np = cv2.resize(image_np, (width, height), cv2.INTER_AREA) image = torch.from_numpy(image_np.astype(np.float32) / 255.0).permute(2, 0, 1).to(baseline.device) # Inference torch.cuda.synchronize() with torch.inference_mode(), (timer := timeit('Inference', verbose=False, average=True)): output = baseline.infer(image) torch.cuda.synchronize() inference_time = timer.average_time pbar.set_postfix({'average inference time': f'{inference_time:.3f}s'}) # Save the output save_path = Path(output_path, image_path.relative_to(input_path).parent, image_path.stem) if skip and save_path.exists(): continue save_path.mkdir(parents=True, exist_ok=True) if save_maps_: cv2.imwrite(str(save_path / 'image.jpg'), cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)) if 'mask' in output: mask = output['mask'].cpu().numpy() cv2.imwrite(str(save_path /'mask.png'), (mask * 255).astype(np.uint8)) for k in ['points_metric', 'points_scale_invariant', 'points_affine_invariant']: if k in output: points = output[k].cpu().numpy() cv2.imwrite(str(save_path / f'{k}.exr'), cv2.cvtColor(points, cv2.COLOR_RGB2BGR), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT]) for k in ['depth_metric', 'depth_scale_invariant', 'depth_affine_invariant', 'disparity_affine_invariant']: if k in output: depth = output[k].cpu().numpy() cv2.imwrite(str(save_path / f'{k}.exr'), depth, [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT]) if k in ['depth_metric', 'depth_scale_invariant']: depth_vis = colorize_depth(depth) elif k == 'depth_affine_invariant': depth_vis = colorize_depth_affine(depth) elif k == 'disparity_affine_invariant': depth_vis = colorize_disparity(depth) cv2.imwrite(str(save_path / f'{k}_vis.png'), cv2.cvtColor(depth_vis, cv2.COLOR_RGB2BGR)) if 'intrinsics' in output: intrinsics = output['intrinsics'].cpu().numpy() fov_x, fov_y = intrinsics_to_fov_numpy(intrinsics) with open(save_path / 'fov.json', 'w') as f: json.dump({ 'fov_x': float(np.rad2deg(fov_x)), 'fov_y': float(np.rad2deg(fov_y)), 'intrinsics': intrinsics.tolist() }, f, indent=4) # Export mesh & visulization if save_ply_ or save_glb_: assert any(k in output for k in ['points_metric', 'points_scale_invariant', 'points_affine_invariant']), 'No point map found in output' points = next(output[k] for k in ['points_metric', 'points_scale_invariant', 'points_affine_invariant'] if k in output).cpu().numpy() mask = output['mask'] if 'mask' in output else np.ones_like(points[..., 0], dtype=bool) normals, normals_mask = utils3d.numpy.points_to_normals(points, mask=mask) faces, vertices, vertex_colors, vertex_uvs = utils3d.numpy.image_mesh( points, image_np.astype(np.float32) / 255, utils3d.numpy.image_uv(width=width, height=height), mask=mask & ~(utils3d.numpy.depth_edge(depth, rtol=threshold, mask=mask) & utils3d.numpy.normals_edge(normals, tol=5, mask=normals_mask)), tri=True ) # When exporting the model, follow the OpenGL coordinate conventions: # - world coordinate system: x right, y up, z backward. # - texture coordinate system: (0, 0) for left-bottom, (1, 1) for right-top. vertices, vertex_uvs = vertices * [1, -1, -1], vertex_uvs * [1, -1] + [0, 1] if save_glb_: save_glb(save_path / 'mesh.glb', vertices, faces, vertex_uvs, image_np) if save_ply_: save_ply(save_path / 'mesh.ply', vertices, faces, vertex_colors) if __name__ == '__main__': main()