Spaces:
Running
Running
Initialize project structure and add configuration for knowledge base and document loading
Browse files- README.md +33 -1
- app.py +135 -38
- config/__init__.py +1 -0
- config/constants.py +49 -0
- config/settings.py +13 -0
- requirements.txt +12 -1
- src/__init__.py +1 -0
- src/interface/__init__.py +1 -0
- src/knowledge_base/__init__.py +1 -0
- src/knowledge_base/loader.py +28 -0
- src/knowledge_base/vector_store.py +59 -0
- src/models/__init__.py +1 -0
- utils/__init__.py +1 -0
README.md
CHANGED
|
@@ -9,4 +9,36 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
-
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
| 13 |
+
|
| 14 |
+
# Status Law Assistant
|
| 15 |
+
|
| 16 |
+
Чат-бот на базе Hugging Face и LangChain для юридической консультации на основе информации с сайта компании Status Law.
|
| 17 |
+
|
| 18 |
+
## 📝 Описание
|
| 19 |
+
|
| 20 |
+
Status Law Assistant — это интеллектуальный чат-бот, который отвечает на вопросы пользователей о юридических услугах компании Status Law. Бот использует технологию RAG (Retrieval-Augmented Generation), чтобы находить релевантную информацию в базе знаний, созданной на основе содержимого официального сайта компании, и генерировать на её основе ответы с помощью языковой модели.
|
| 21 |
+
|
| 22 |
+
## ✨ Возможности
|
| 23 |
+
|
| 24 |
+
- Автоматическое создание и обновление базы знаний на основе контента сайта status.law
|
| 25 |
+
- Поиск релевантной информации для ответа на вопросы пользователей
|
| 26 |
+
- Генерация ответов с использованием контекстно-ориентированного подхода
|
| 27 |
+
- Поддержка многоязычных запросов (отвечает на языке вопроса)
|
| 28 |
+
- Настраиваемые параметры генерации текста (температура, количество токенов и т.д.)
|
| 29 |
+
|
| 30 |
+
## 🚀 Технологии
|
| 31 |
+
|
| 32 |
+
- **LangChain**: для создания цепочек обработки запросов и управления базой знаний
|
| 33 |
+
- **Hugging Face**: для доступа к языковым моделям и хостинга приложения
|
| 34 |
+
- **FAISS**: для эффективного векторного поиска
|
| 35 |
+
- **Gradio**: для создания пользовательского интерфейса
|
| 36 |
+
- **BeautifulSoup**: для извлечения информации с веб-страниц
|
| 37 |
+
|
| 38 |
+
## 🏗️ Структура проекта
|
| 39 |
+
|
| 40 |
+
- `app.py`: основной файл приложения, в котором определен интерфейс и логика обработки запросов
|
| 41 |
+
- `config/`: директория с конфигурационными файлами
|
| 42 |
+
- `src/`: директория с исходным кодом
|
| 43 |
+
- `knowledge_base/`: модуль для работы с базой знаний
|
| 44 |
+
- `models/`: модуль для работы с моделями
|
app.py
CHANGED
|
@@ -1,32 +1,70 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def respond(
|
| 11 |
message,
|
| 12 |
-
history
|
|
|
|
| 13 |
system_message,
|
| 14 |
max_tokens,
|
| 15 |
temperature,
|
| 16 |
top_p,
|
| 17 |
):
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
messages.append({"role": "user", "content": message})
|
| 27 |
-
|
|
|
|
| 28 |
response = ""
|
| 29 |
-
|
| 30 |
for message in client.chat_completion(
|
| 31 |
messages,
|
| 32 |
max_tokens=max_tokens,
|
|
@@ -35,30 +73,89 @@ def respond(
|
|
| 35 |
top_p=top_p,
|
| 36 |
):
|
| 37 |
token = message.choices[0].delta.content
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
""
|
| 46 |
-
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
-
)
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
from huggingface_hub import InferenceClient
|
| 4 |
+
from config.constants import DEFAULT_SYSTEM_MESSAGE
|
| 5 |
+
from config.settings import DEFAULT_MODEL
|
| 6 |
+
from src.knowledge_base.vector_store import create_vector_store, load_vector_store
|
| 7 |
|
| 8 |
+
# Создаем клиент для инференса
|
| 9 |
+
client = InferenceClient(DEFAULT_MODEL)
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Состояние для хранения контекста
|
| 12 |
+
context_store = {}
|
| 13 |
+
|
| 14 |
+
def get_context(message, conversation_id):
|
| 15 |
+
"""Получение контекста из базы знаний"""
|
| 16 |
+
vector_store = load_vector_store()
|
| 17 |
+
if vector_store is None:
|
| 18 |
+
return "База знаний не найдена. Пожалуйста, создайте её сначала."
|
| 19 |
+
|
| 20 |
+
try:
|
| 21 |
+
# Извлечение контекста
|
| 22 |
+
context_docs = vector_store.similarity_search(message, k=3)
|
| 23 |
+
context_text = "\n\n".join([f"Из {doc.metadata.get('source', 'неизвестно')}: {doc.page_content}" for doc in context_docs])
|
| 24 |
+
|
| 25 |
+
# Сохраняем контекст для этого разговора
|
| 26 |
+
context_store[conversation_id] = context_text
|
| 27 |
+
|
| 28 |
+
return context_text
|
| 29 |
+
except Exception as e:
|
| 30 |
+
print(f"Ошибка при получении контекста: {str(e)}")
|
| 31 |
+
return ""
|
| 32 |
|
| 33 |
def respond(
|
| 34 |
message,
|
| 35 |
+
history,
|
| 36 |
+
conversation_id,
|
| 37 |
system_message,
|
| 38 |
max_tokens,
|
| 39 |
temperature,
|
| 40 |
top_p,
|
| 41 |
):
|
| 42 |
+
# Если это новый разговор, создаем ID
|
| 43 |
+
if not conversation_id:
|
| 44 |
+
import uuid
|
| 45 |
+
conversation_id = str(uuid.uuid4())
|
| 46 |
+
|
| 47 |
+
# Получаем контекст из базы знаний
|
| 48 |
+
context = get_context(message, conversation_id)
|
| 49 |
+
|
| 50 |
+
# Формируем полную системную инструкцию с контекстом
|
| 51 |
+
full_system_message = system_message
|
| 52 |
+
if context:
|
| 53 |
+
full_system_message += f"\n\nКонтекст для ответа:\n{context}"
|
| 54 |
+
|
| 55 |
+
# Формируем сообщения для LLM
|
| 56 |
+
messages = [{"role": "system", "content": full_system_message}]
|
| 57 |
+
|
| 58 |
+
# Преобразуем историю в формат для API
|
| 59 |
+
for user_msg, bot_msg in history:
|
| 60 |
+
messages.append({"role": "user", "content": user_msg})
|
| 61 |
+
messages.append({"role": "assistant", "content": bot_msg})
|
| 62 |
+
|
| 63 |
+
# Добавляем текущее сообщение пользователя
|
| 64 |
messages.append({"role": "user", "content": message})
|
| 65 |
+
|
| 66 |
+
# Отправляем запрос к API и стримим ответ
|
| 67 |
response = ""
|
|
|
|
| 68 |
for message in client.chat_completion(
|
| 69 |
messages,
|
| 70 |
max_tokens=max_tokens,
|
|
|
|
| 73 |
top_p=top_p,
|
| 74 |
):
|
| 75 |
token = message.choices[0].delta.content
|
| 76 |
+
if token:
|
| 77 |
+
response += token
|
| 78 |
+
yield response, conversation_id
|
| 79 |
|
| 80 |
+
def build_kb():
|
| 81 |
+
"""Функция для создания базы знаний"""
|
| 82 |
+
try:
|
| 83 |
+
success, message = create_vector_store()
|
| 84 |
+
return message
|
| 85 |
+
except Exception as e:
|
| 86 |
+
return f"Ошибка при создании базы знаний: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
# Создаем интерфейс
|
| 89 |
+
with gr.Blocks() as demo:
|
| 90 |
+
gr.Markdown("# 🤖 Status Law Assistant")
|
| 91 |
+
|
| 92 |
+
conversation_id = gr.State(None)
|
| 93 |
+
|
| 94 |
+
with gr.Row():
|
| 95 |
+
with gr.Column(scale=3):
|
| 96 |
+
chatbot = gr.Chatbot(label="Чат")
|
| 97 |
+
|
| 98 |
+
with gr.Row():
|
| 99 |
+
msg = gr.Textbox(
|
| 100 |
+
label="Ваш вопрос",
|
| 101 |
+
placeholder="Введите ваш вопрос...",
|
| 102 |
+
scale=4
|
| 103 |
+
)
|
| 104 |
+
submit_btn = gr.Button("Отправить", variant="primary")
|
| 105 |
+
|
| 106 |
+
with gr.Column(scale=1):
|
| 107 |
+
gr.Markdown("### Управление базой знаний")
|
| 108 |
+
build_kb_btn = gr.Button("Создать/обновить базу знаний", variant="primary")
|
| 109 |
+
kb_status = gr.Textbox(label="Статус базы знаний", interactive=False)
|
| 110 |
+
|
| 111 |
+
gr.Markdown("### Настройки чата")
|
| 112 |
+
system_message = gr.Textbox(
|
| 113 |
+
label="Системное сообщение",
|
| 114 |
+
value=DEFAULT_SYSTEM_MESSAGE,
|
| 115 |
+
lines=5
|
| 116 |
+
)
|
| 117 |
+
max_tokens = gr.Slider(
|
| 118 |
+
minimum=1,
|
| 119 |
+
maximum=2048,
|
| 120 |
+
value=512,
|
| 121 |
+
step=1,
|
| 122 |
+
label="Максимальное количество токенов"
|
| 123 |
+
)
|
| 124 |
+
temperature = gr.Slider(
|
| 125 |
+
minimum=0.1,
|
| 126 |
+
maximum=2.0,
|
| 127 |
+
value=0.7,
|
| 128 |
+
step=0.1,
|
| 129 |
+
label="Температура"
|
| 130 |
+
)
|
| 131 |
+
top_p = gr.Slider(
|
| 132 |
+
minimum=0.1,
|
| 133 |
+
maximum=1.0,
|
| 134 |
+
value=0.95,
|
| 135 |
+
step=0.05,
|
| 136 |
+
label="Top-p (nucleus sampling)"
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
clear_btn = gr.Button("Очистить историю чата")
|
| 140 |
+
|
| 141 |
+
# Обработчики событий
|
| 142 |
+
msg.submit(
|
| 143 |
+
respond,
|
| 144 |
+
[msg, chatbot, conversation_id, system_message, max_tokens, temperature, top_p],
|
| 145 |
+
[chatbot, conversation_id]
|
| 146 |
+
)
|
| 147 |
+
submit_btn.click(
|
| 148 |
+
respond,
|
| 149 |
+
[msg, chatbot, conversation_id, system_message, max_tokens, temperature, top_p],
|
| 150 |
+
[chatbot, conversation_id]
|
| 151 |
+
)
|
| 152 |
+
build_kb_btn.click(build_kb, None, kb_status)
|
| 153 |
+
clear_btn.click(lambda: ([], None), None, [chatbot, conversation_id])
|
| 154 |
|
| 155 |
+
# Запускаем приложение
|
| 156 |
if __name__ == "__main__":
|
| 157 |
+
# Проверяем наличие базы знаний
|
| 158 |
+
if not os.path.exists(os.path.join("data", "vector_store", "index.faiss")):
|
| 159 |
+
print("База знаний не найдена. Создайте её через интерфейс.")
|
| 160 |
+
|
| 161 |
+
demo.launch()
|
config/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
config/constants.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# URLs для создания базы знаний
|
| 2 |
+
URLS = [
|
| 3 |
+
"https://status.law",
|
| 4 |
+
"https://status.law/about",
|
| 5 |
+
"https://status.law/careers",
|
| 6 |
+
"https://status.law/tariffs-for-services-of-protection-against-extradition",
|
| 7 |
+
"https://status.law/challenging-sanctions",
|
| 8 |
+
"https://status.law/law-firm-contact-legal-protection",
|
| 9 |
+
"https://status.law/cross-border-banking-legal-issues",
|
| 10 |
+
"https://status.law/extradition-defense",
|
| 11 |
+
"https://status.law/international-prosecution-protection",
|
| 12 |
+
"https://status.law/interpol-red-notice-removal",
|
| 13 |
+
"https://status.law/practice-areas",
|
| 14 |
+
"https://status.law/reputation-protection",
|
| 15 |
+
"https://status.law/faq"
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
# Настройки для чанкирования текста
|
| 19 |
+
CHUNK_SIZE = 500
|
| 20 |
+
CHUNK_OVERLAP = 100
|
| 21 |
+
|
| 22 |
+
# Шаблон системного сообщения
|
| 23 |
+
DEFAULT_SYSTEM_MESSAGE = """
|
| 24 |
+
You are a helpful and polite legal assistant at Status Law.
|
| 25 |
+
You answer in the language in which the question was asked.
|
| 26 |
+
Answer the question based on the context provided.
|
| 27 |
+
If you cannot answer based on the context, say so politely and offer to contact Status Law directly via the following channels:
|
| 28 |
+
- For all users: +32465594521 (landline phone).
|
| 29 |
+
- For English and Swedish speakers only: +46728495129 (available on WhatsApp, Telegram, Signal, IMO).
|
| 30 |
+
- Provide a link to the contact form: [Contact Form](https://status.law/law-firm-contact-legal-protection/).
|
| 31 |
+
If the user has questions about specific services and their costs, suggest they visit the page https://status.law/tariffs-for-services-of-protection-against-extradition-and-international-prosecution/ for detailed information.
|
| 32 |
+
|
| 33 |
+
Ask the user additional questions to understand which service to recommend and provide an estimated cost. For example, clarify their situation and needs to suggest the most appropriate options.
|
| 34 |
+
|
| 35 |
+
Also, offer free consultations if they are available and suitable for the user's request.
|
| 36 |
+
Answer professionally but in a friendly manner.
|
| 37 |
+
|
| 38 |
+
Example:
|
| 39 |
+
Q: How can I challenge the sanctions?
|
| 40 |
+
A: To challenge the sanctions, you should consult with our legal team, who specialize in this area. Please contact us directly for detailed advice. You can fill out our contact form here: [Contact Form](https://status.law/law-firm-contact-legal-protection/).
|
| 41 |
+
|
| 42 |
+
Context: {context}
|
| 43 |
+
Question: {question}
|
| 44 |
+
|
| 45 |
+
Response Guidelines:
|
| 46 |
+
1. Answer in the user's language
|
| 47 |
+
2. Cite sources when possible
|
| 48 |
+
3. Offer contact options if unsure
|
| 49 |
+
"""
|
config/settings.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
|
| 4 |
+
# Загрузка переменных окружения
|
| 5 |
+
load_dotenv()
|
| 6 |
+
|
| 7 |
+
# Пути к директориям
|
| 8 |
+
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 9 |
+
VECTOR_STORE_PATH = os.path.join(BASE_DIR, "data", "vector_store")
|
| 10 |
+
|
| 11 |
+
# Настройки моделей
|
| 12 |
+
EMBEDDING_MODEL = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
| 13 |
+
DEFAULT_MODEL = "HuggingFaceH4/zephyr-7b-beta" # Модель по умолчанию из шаблона
|
requirements.txt
CHANGED
|
@@ -1 +1,12 @@
|
|
| 1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
huggingface_hub==0.25.2
|
| 2 |
+
gradio>=4.0.0
|
| 3 |
+
langchain>=0.1.0
|
| 4 |
+
langchain-community>=0.0.11
|
| 5 |
+
langchain-core>=0.1.10
|
| 6 |
+
langchain-text-splitters>=0.0.1
|
| 7 |
+
langchain-huggingface>=0.0.1
|
| 8 |
+
faiss-cpu>=1.7.4
|
| 9 |
+
sentence-transformers>=2.2.2
|
| 10 |
+
beautifulsoup4>=4.12.2
|
| 11 |
+
requests>=2.31.0
|
| 12 |
+
python-dotenv>=1.0.0
|
src/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
src/interface/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
src/knowledge_base/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
src/knowledge_base/loader.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from bs4 import BeautifulSoup
|
| 3 |
+
from langchain_community.document_loaders import WebBaseLoader
|
| 4 |
+
from langchain_core.documents import Document
|
| 5 |
+
from config.constants import URLS
|
| 6 |
+
|
| 7 |
+
def load_documents():
|
| 8 |
+
"""Загрузка документов с веб-сайта"""
|
| 9 |
+
documents = []
|
| 10 |
+
|
| 11 |
+
headers = {
|
| 12 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
for url in URLS:
|
| 16 |
+
try:
|
| 17 |
+
loader = WebBaseLoader(
|
| 18 |
+
web_paths=[url],
|
| 19 |
+
header_template=headers
|
| 20 |
+
)
|
| 21 |
+
docs = loader.load()
|
| 22 |
+
if docs:
|
| 23 |
+
documents.extend(docs)
|
| 24 |
+
print(f"Загружено {url}: {len(docs)} документов")
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"Ошибка загрузки {url}: {str(e)}")
|
| 27 |
+
|
| 28 |
+
return documents
|
src/knowledge_base/vector_store.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 3 |
+
from langchain_community.vectorstores import FAISS
|
| 4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 5 |
+
from src.knowledge_base.loader import load_documents
|
| 6 |
+
from config.settings import VECTOR_STORE_PATH, EMBEDDING_MODEL
|
| 7 |
+
from config.constants import CHUNK_SIZE, CHUNK_OVERLAP
|
| 8 |
+
|
| 9 |
+
def get_embeddings():
|
| 10 |
+
"""Получение модели эмбеддингов"""
|
| 11 |
+
return HuggingFaceEmbeddings(
|
| 12 |
+
model_name=EMBEDDING_MODEL,
|
| 13 |
+
model_kwargs={'device': 'cpu'}
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
def create_vector_store():
|
| 17 |
+
"""Создание или обновление векторного хранилища"""
|
| 18 |
+
# Загрузка документов
|
| 19 |
+
documents = load_documents()
|
| 20 |
+
|
| 21 |
+
if not documents:
|
| 22 |
+
return False, "Ошибка: документы не загружены"
|
| 23 |
+
|
| 24 |
+
# Разделение на чанки
|
| 25 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 26 |
+
chunk_size=CHUNK_SIZE,
|
| 27 |
+
chunk_overlap=CHUNK_OVERLAP
|
| 28 |
+
)
|
| 29 |
+
chunks = text_splitter.split_documents(documents)
|
| 30 |
+
|
| 31 |
+
# Инициализация эмбеддингов
|
| 32 |
+
embeddings = get_embeddings()
|
| 33 |
+
|
| 34 |
+
# Создание векторного хранилища
|
| 35 |
+
vector_store = FAISS.from_documents(chunks, embeddings)
|
| 36 |
+
|
| 37 |
+
# Сохранение
|
| 38 |
+
os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
|
| 39 |
+
vector_store.save_local(folder_path=VECTOR_STORE_PATH)
|
| 40 |
+
|
| 41 |
+
return True, f"База знаний создана успешно! Загружено {len(documents)} документов, создано {len(chunks)} чанков."
|
| 42 |
+
|
| 43 |
+
def load_vector_store():
|
| 44 |
+
"""Загрузка векторного хранилища"""
|
| 45 |
+
embeddings = get_embeddings()
|
| 46 |
+
|
| 47 |
+
if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
|
| 48 |
+
return None
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
vector_store = FAISS.load_local(
|
| 52 |
+
VECTOR_STORE_PATH,
|
| 53 |
+
embeddings,
|
| 54 |
+
allow_dangerous_deserialization=True
|
| 55 |
+
)
|
| 56 |
+
return vector_store
|
| 57 |
+
except Exception as e:
|
| 58 |
+
print(f"Ошибка загрузки векторного хранилища: {str(e)}")
|
| 59 |
+
return None
|
src/models/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
utils/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|